Files
VoxCPM/scripts/test_voxcpm_ft_infer.py
2025-12-05 22:22:13 +08:00

132 lines
3.5 KiB
Python

#!/usr/bin/env python3
"""
Full finetune inference script (no LoRA).
Checkpoint directory contains complete model files (pytorch_model.bin, config.json, audiovae.pth, etc.),
can be loaded directly via VoxCPM.
Usage:
python scripts/test_voxcpm_ft_infer.py \
--ckpt_dir /path/to/checkpoints/step_0001000 \
--text "Hello, I am the finetuned VoxCPM." \
--output ft_test.wav
With voice cloning:
python scripts/test_voxcpm_ft_infer.py \
--ckpt_dir /path/to/checkpoints/step_0001000 \
--text "Hello, this is voice cloning result." \
--prompt_audio path/to/ref.wav \
--prompt_text "Reference audio transcript" \
--output ft_clone.wav
"""
import argparse
from pathlib import Path
import soundfile as sf
from voxcpm.core import VoxCPM
def parse_args():
parser = argparse.ArgumentParser("VoxCPM full-finetune inference test (no LoRA)")
parser.add_argument(
"--ckpt_dir",
type=str,
required=True,
help="Checkpoint directory (contains pytorch_model.bin, config.json, audiovae.pth, etc.)",
)
parser.add_argument(
"--text",
type=str,
required=True,
help="Target text to synthesize",
)
parser.add_argument(
"--prompt_audio",
type=str,
default="",
help="Optional: reference audio path for voice cloning",
)
parser.add_argument(
"--prompt_text",
type=str,
default="",
help="Optional: transcript of reference audio",
)
parser.add_argument(
"--output",
type=str,
default="ft_test.wav",
help="Output wav file path",
)
parser.add_argument(
"--cfg_value",
type=float,
default=2.0,
help="CFG scale (default: 2.0)",
)
parser.add_argument(
"--inference_timesteps",
type=int,
default=10,
help="Diffusion inference steps (default: 10)",
)
parser.add_argument(
"--max_len",
type=int,
default=600,
help="Max generation steps",
)
parser.add_argument(
"--normalize",
action="store_true",
help="Enable text normalization",
)
return parser.parse_args()
def main():
args = parse_args()
# Load model from checkpoint directory (no denoiser)
print(f"[FT Inference] Loading model: {args.ckpt_dir}")
model = VoxCPM.from_pretrained(
hf_model_id=args.ckpt_dir,
load_denoiser=False,
optimize=True,
)
# Run inference
prompt_wav_path = args.prompt_audio if args.prompt_audio else None
prompt_text = args.prompt_text if args.prompt_text else None
print(f"[FT Inference] Synthesizing: text='{args.text}'")
if prompt_wav_path:
print(f"[FT Inference] Using reference audio: {prompt_wav_path}")
print(f"[FT Inference] Reference text: {prompt_text}")
audio_np = model.generate(
text=args.text,
prompt_wav_path=prompt_wav_path,
prompt_text=prompt_text,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
max_length=args.max_len,
normalize=args.normalize,
denoise=False,
)
# Save audio
out_path = Path(args.output)
out_path.parent.mkdir(parents=True, exist_ok=True)
sf.write(str(out_path), audio_np, model.tts_model.sample_rate)
print(f"[FT Inference] Saved to: {out_path}, duration: {len(audio_np) / model.tts_model.sample_rate:.2f}s")
if __name__ == "__main__":
main()