Files
VoxCPM/scripts/train_voxcpm_finetune.py

510 lines
20 KiB
Python

#!/usr/bin/env python3
import sys
from pathlib import Path
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root / "src"))
import contextlib
from typing import Dict, Optional
import argbind
import torch
from tensorboardX import SummaryWriter
from torch.optim import AdamW
from transformers import get_cosine_schedule_with_warmup
import signal
import os
try:
from safetensors.torch import save_file
SAFETENSORS_AVAILABLE = True
except ImportError:
SAFETENSORS_AVAILABLE = False
print("Warning: safetensors not available, will use pytorch format")
from voxcpm.model import VoxCPMModel
from voxcpm.model.voxcpm import LoRAConfig
from voxcpm.training import (
Accelerator,
BatchProcessor,
TrainingTracker,
build_dataloader,
load_audio_text_datasets,
)
@argbind.bind(without_prefix=True)
def train(
pretrained_path: str,
train_manifest: str,
val_manifest: str = "",
sample_rate: int = 16_000,
batch_size: int = 1,
grad_accum_steps: int = 1,
num_workers: int = 2,
num_iters: int = 100_000,
log_interval: int = 100,
valid_interval: int = 1_000,
save_interval: int = 10_000,
learning_rate: float = 1e-4,
weight_decay: float = 1e-2,
warmup_steps: int = 1_000,
max_steps: int = 100_000,
max_batch_tokens: int = 0,
save_path: str = "checkpoints",
tensorboard: str = "",
lambdas: Dict[str, float] = {"loss/diff": 1.0, "loss/stop": 1.0},
lora: dict = None,
config_path: str = "",
# Distribution options (for LoRA checkpoints)
hf_model_id: str = "", # HuggingFace model ID (e.g., "openbmb/VoxCPM1.5")
distribute: bool = False, # If True, save hf_model_id as base_model; otherwise save pretrained_path
):
_ = config_path
# Validate distribution options
if lora is not None and distribute and not hf_model_id:
raise ValueError("hf_model_id is required when distribute=True")
accelerator = Accelerator(amp=True)
save_dir = Path(save_path)
tb_dir = Path(tensorboard) if tensorboard else save_dir / "logs"
# Only create directories on rank 0 to avoid race conditions
if accelerator.rank == 0:
save_dir.mkdir(parents=True, exist_ok=True)
tb_dir.mkdir(parents=True, exist_ok=True)
accelerator.barrier() # Wait for directory creation
writer = SummaryWriter(log_dir=str(tb_dir)) if accelerator.rank == 0 else None
tracker = TrainingTracker(writer=writer, log_file=str(save_dir / "train.log"), rank=accelerator.rank)
base_model = VoxCPMModel.from_local(pretrained_path, optimize=False, training=True, lora_config=LoRAConfig(**lora) if lora else None)
tokenizer = base_model.text_tokenizer
train_ds, val_ds = load_audio_text_datasets(
train_manifest=train_manifest,
val_manifest=val_manifest,
sample_rate=sample_rate,
)
def tokenize(batch):
text_list = batch["text"]
text_ids = [tokenizer(text) for text in text_list]
return {"text_ids": text_ids}
train_ds = train_ds.map(tokenize, batched=True, remove_columns=["text"])
if val_ds is not None:
val_ds = val_ds.map(tokenize, batched=True, remove_columns=["text"])
dataset_cnt = int(max(train_ds["dataset_id"])) + 1 if "dataset_id" in train_ds.column_names else 1
num_train_samples = len(train_ds)
# ------------------------------------------------------------------ #
# Optional: filter samples by estimated token count to avoid OOM
# Enabled when max_batch_tokens > 0:
# max_sample_len = max_batch_tokens // batch_size
# Samples exceeding this length will be dropped
# ------------------------------------------------------------------ #
if max_batch_tokens and max_batch_tokens > 0:
from voxcpm.training.data import compute_sample_lengths
audio_vae_fps = base_model.audio_vae.sample_rate / base_model.audio_vae.hop_length
est_lengths = compute_sample_lengths(
train_ds,
audio_vae_fps=audio_vae_fps,
patch_size=base_model.config.patch_size,
)
max_sample_len = max_batch_tokens // batch_size if batch_size > 0 else max(est_lengths)
keep_indices = [i for i, L in enumerate(est_lengths) if L <= max_sample_len]
if len(keep_indices) < len(train_ds) and accelerator.rank == 0:
tracker.print(
f"Filtering {len(train_ds) - len(keep_indices)} / {len(train_ds)} "
f"training samples longer than {max_sample_len} tokens "
f"(max_batch_tokens={max_batch_tokens})."
)
train_ds = train_ds.select(keep_indices)
train_loader = build_dataloader(
train_ds,
accelerator=accelerator,
batch_size=batch_size,
num_workers=num_workers,
drop_last=True,
)
val_loader = (
build_dataloader(
val_ds,
accelerator=accelerator,
batch_size=batch_size,
num_workers=num_workers,
drop_last=False,
)
if val_ds is not None
else None
)
batch_processor = BatchProcessor(
config=base_model.config,
audio_vae=base_model.audio_vae,
dataset_cnt=dataset_cnt,
device=accelerator.device,
)
del base_model.audio_vae
model = accelerator.prepare_model(base_model)
unwrapped_model = accelerator.unwrap(model)
unwrapped_model.train()
# Only print param info on rank 0 to avoid cluttered output
if accelerator.rank == 0:
for name, param in model.named_parameters():
print(name, param.requires_grad)
optimizer = AdamW(
(p for p in model.parameters() if p.requires_grad),
lr=learning_rate,
weight_decay=weight_decay,
)
# Cosine + warmup scheduler from transformers:
# - num_warmup_steps: warmup steps
# - num_training_steps: total training steps (outer step count)
total_training_steps = max_steps if max_steps > 0 else num_iters
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=total_training_steps,
)
# Try to load checkpoint and resume training
start_step = 0
if accelerator.rank == 0:
start_step = load_checkpoint(model, optimizer, scheduler, save_dir)
# Broadcast start_step to all processes
if hasattr(accelerator, 'all_reduce'):
start_step_tensor = torch.tensor(start_step, device=accelerator.device)
accelerator.all_reduce(start_step_tensor)
start_step = int(start_step_tensor.item())
if start_step > 0 and accelerator.rank == 0:
tracker.print(f"Resuming training from step {start_step}")
# Resume tracker for signal handler to read current step
resume = {"step": start_step}
# Register signal handler to save checkpoint on termination (SIGTERM/SIGINT)
def _signal_handler(signum, frame, _model=model, _optim=optimizer, _sched=scheduler, _save_dir=save_dir, _pretrained=pretrained_path, _hf_id=hf_model_id, _dist=distribute, _resume=resume):
try:
cur_step = int(_resume.get("step", start_step))
except Exception:
cur_step = start_step
print(f"Signal {signum} received. Saving checkpoint at step {cur_step} ...")
try:
save_checkpoint(_model, _optim, _sched, _save_dir, cur_step, _pretrained, _hf_id, _dist)
print("Checkpoint saved. Exiting.")
except Exception as e:
print(f"Error saving checkpoint on signal: {e}")
os._exit(0)
signal.signal(signal.SIGTERM, _signal_handler)
signal.signal(signal.SIGINT, _signal_handler)
# Manual epoch management instead of itertools.cycle to support DistributedSampler.set_epoch()
grad_accum_steps = max(int(grad_accum_steps), 1)
data_epoch = 0
train_iter = iter(train_loader)
def get_next_batch():
"""Get next batch, handles epoch boundary and DistributedSampler."""
nonlocal train_iter, data_epoch
try:
return next(train_iter)
except StopIteration:
data_epoch += 1
# Key: set DistributedSampler epoch to ensure different data order each epoch
sampler = getattr(train_loader, 'sampler', None)
if hasattr(sampler, 'set_epoch'):
sampler.set_epoch(data_epoch)
train_iter = iter(train_loader)
return next(train_iter)
with tracker.live():
for step in range(start_step, num_iters):
# update resume step so signal handler can save current progress
resume["step"] = step
tracker.step = step
optimizer.zero_grad(set_to_none=True)
# Gradient accumulation: accumulate gradients over micro-batches before optimizer step
loss_dict = {}
for micro_step in range(grad_accum_steps):
batch = get_next_batch()
processed = batch_processor(batch)
# Only sync gradients on the last micro-batch
# Use no_sync() for intermediate steps to reduce communication overhead
is_last_micro_step = (micro_step == grad_accum_steps - 1)
sync_context = contextlib.nullcontext() if is_last_micro_step else accelerator.no_sync()
with sync_context:
with accelerator.autocast(dtype=torch.bfloat16):
outputs = model(
processed["text_tokens"],
processed["text_mask"],
processed["audio_feats"],
processed["audio_mask"],
processed["loss_mask"],
processed["position_ids"],
processed["labels"],
progress=step / max(1, num_iters),
)
total_loss = 0.0
for key, value in outputs.items():
if key.startswith("loss/"):
weight = lambdas.get(key, 1.0)
loss_value = value * weight / grad_accum_steps
total_loss = total_loss + loss_value
# Record raw loss from last micro-batch for logging
loss_dict[key] = value.detach()
# Accumulate gradients (normalized by grad_accum_steps)
accelerator.backward(total_loss)
# After all micro-batches, do unscale / grad_norm / step
scaler = getattr(accelerator, "scaler", None)
if scaler is not None:
scaler.unscale_(optimizer)
# Use large max_norm to only compute grad_norm without actual clipping
grad_norm = torch.nn.utils.clip_grad_norm_(unwrapped_model.parameters(), max_norm=1e9)
accelerator.step(optimizer)
accelerator.update()
scheduler.step()
if step % log_interval == 0:
loss_values = {k: v.item() if isinstance(v, torch.Tensor) else float(v) for k, v in loss_dict.items()}
loss_values["lr"] = float(optimizer.param_groups[0]["lr"])
# Approximate epoch: seen samples / total samples (considering grad_accum and batch_size)
epoch = (step * grad_accum_steps * batch_size) / max(1, num_train_samples)
loss_values["epoch"] = float(epoch)
loss_values["grad_norm"] = float(grad_norm)
tracker.log_metrics(loss_values, split="train")
if val_loader is not None and step % valid_interval == 0 and step != 0:
validate(model, val_loader, batch_processor, accelerator, tracker, lambdas)
if step % save_interval == 0 and accelerator.rank == 0:
save_checkpoint(model, optimizer, scheduler, save_dir, step, pretrained_path, hf_model_id, distribute)
if accelerator.rank == 0:
save_checkpoint(model, optimizer, scheduler, save_dir, num_iters, pretrained_path, hf_model_id, distribute)
if writer:
writer.close()
def validate(model, val_loader, batch_processor, accelerator, tracker, lambdas):
model.eval()
losses = []
num_batches = 0
max_val_batches = 10
with torch.no_grad():
for batch in val_loader:
if num_batches >= max_val_batches:
break
processed = batch_processor(batch)
with accelerator.autocast(dtype=torch.bfloat16):
outputs = model(
processed["text_tokens"],
processed["text_mask"],
processed["audio_feats"],
processed["audio_mask"],
processed["loss_mask"],
processed["position_ids"],
processed["labels"],
progress=0.0,
sample_generate=False,
)
total = 0.0
for key, value in outputs.items():
if key.startswith("loss/"):
total += lambdas.get(key, 1.0) * value
losses.append(total.detach())
num_batches += 1
if losses:
mean_loss = torch.stack(losses).mean()
# All-reduce validation loss across processes for global average
accelerator.all_reduce(mean_loss)
tracker.log_metrics({"loss": mean_loss.item()}, split="val")
model.train()
def load_checkpoint(model, optimizer, scheduler, save_dir: Path):
"""
Load the latest checkpoint if it exists.
Returns the step number to resume from, or 0 if no checkpoint found.
"""
latest_folder = save_dir / "latest"
if not latest_folder.exists():
return 0
unwrapped = model.module if hasattr(model, "module") else model
lora_cfg = unwrapped.lora_config
# Load model weights
if lora_cfg is not None:
# LoRA: load lora_weights
lora_weights_path = latest_folder / "lora_weights.safetensors"
if not lora_weights_path.exists():
lora_weights_path = latest_folder / "lora_weights.ckpt"
if lora_weights_path.exists():
if lora_weights_path.suffix == ".safetensors":
from safetensors.torch import load_file
state_dict = load_file(str(lora_weights_path))
else:
ckpt = torch.load(lora_weights_path, map_location="cpu")
state_dict = ckpt.get("state_dict", ckpt)
# Load only lora weights
unwrapped.load_state_dict(state_dict, strict=False)
print(f"Loaded LoRA weights from {lora_weights_path}")
else:
# Full finetune: load model.safetensors or pytorch_model.bin
model_path = latest_folder / "model.safetensors"
if not model_path.exists():
model_path = latest_folder / "pytorch_model.bin"
if model_path.exists():
if model_path.suffix == ".safetensors":
from safetensors.torch import load_file
state_dict = load_file(str(model_path))
else:
ckpt = torch.load(model_path, map_location="cpu")
state_dict = ckpt.get("state_dict", ckpt)
unwrapped.load_state_dict(state_dict, strict=False)
print(f"Loaded model weights from {model_path}")
# Load optimizer state
optimizer_path = latest_folder / "optimizer.pth"
if optimizer_path.exists():
optimizer.load_state_dict(torch.load(optimizer_path, map_location="cpu"))
print(f"Loaded optimizer state from {optimizer_path}")
# Load scheduler state
scheduler_path = latest_folder / "scheduler.pth"
if scheduler_path.exists():
scheduler.load_state_dict(torch.load(scheduler_path, map_location="cpu"))
print(f"Loaded scheduler state from {scheduler_path}")
# Try to infer step from checkpoint folders
step_folders = [d for d in save_dir.iterdir() if d.is_dir() and d.name.startswith("step_")]
if step_folders:
steps = [int(d.name.split("_")[1]) for d in step_folders]
resume_step = max(steps)
print(f"Resuming from step {resume_step}")
return resume_step
return 0
def save_checkpoint(model, optimizer, scheduler, save_dir: Path, step: int, pretrained_path: str = None, hf_model_id: str = "", distribute: bool = False):
"""
Save checkpoint with different strategies for full finetune vs LoRA:
- Full finetune: save non-vae weights to model.safetensors (or pytorch_model.bin if safetensors unavailable)
- LoRA: save only lora weights to lora_weights.safetensors (or lora_weights.ckpt if safetensors unavailable)
"""
import shutil
save_dir.mkdir(parents=True, exist_ok=True)
tag = "latest" if step == 0 else f"step_{step:07d}"
folder = save_dir / tag
folder.mkdir(parents=True, exist_ok=True)
unwrapped = model.module if hasattr(model, "module") else model
full_state = unwrapped.state_dict()
lora_cfg = unwrapped.lora_config
if lora_cfg is not None:
# LoRA finetune: save only lora_A/lora_B weights
state_dict = {k: v for k, v in full_state.items() if "lora_" in k}
if SAFETENSORS_AVAILABLE:
save_file(state_dict, folder / "lora_weights.safetensors")
else:
torch.save({"state_dict": state_dict}, folder / "lora_weights.ckpt")
# Save LoRA config and base model path to a separate JSON file
# If distribute=True, save hf_model_id; otherwise save local pretrained_path
import json
base_model_to_save = hf_model_id if distribute else (str(pretrained_path) if pretrained_path else None)
lora_info = {
"base_model": base_model_to_save,
"lora_config": lora_cfg.model_dump() if hasattr(lora_cfg, "model_dump") else vars(lora_cfg),
}
with open(folder / "lora_config.json", "w", encoding="utf-8") as f:
json.dump(lora_info, f, indent=2, ensure_ascii=False)
else:
# Full finetune: save non-vae weights to model.safetensors
state_dict = {k: v for k, v in full_state.items() if not k.startswith("audio_vae.")}
if SAFETENSORS_AVAILABLE:
save_file(state_dict, folder / "model.safetensors")
else:
torch.save({"state_dict": state_dict}, folder / "pytorch_model.bin")
# Copy config files from pretrained path
if pretrained_path:
pretrained_dir = Path(pretrained_path)
files_to_copy = ["config.json", "audiovae.pth", "tokenizer.json", "special_tokens_map.json", "tokenizer_config.json"]
for fname in files_to_copy:
src = pretrained_dir / fname
if src.exists():
shutil.copy2(src, folder / fname)
torch.save(optimizer.state_dict(), folder / "optimizer.pth")
torch.save(scheduler.state_dict(), folder / "scheduler.pth")
# Update (or create) a `latest` symlink pointing to the most recent checkpoint folder
latest_link = save_dir / "latest"
try:
if latest_link.exists() or latest_link.is_symlink():
# remove existing link or directory
if latest_link.is_dir() and not latest_link.is_symlink():
shutil.rmtree(latest_link)
else:
latest_link.unlink()
# Create a symlink pointing to the new folder
os.symlink(str(folder), str(latest_link))
except Exception:
# If symlink creation fails (e.g., on Windows or permission issues), fall back to copying
try:
if latest_link.exists():
if latest_link.is_dir():
shutil.rmtree(latest_link)
else:
latest_link.unlink()
shutil.copytree(folder, latest_link)
except Exception:
print(f"Warning: failed to update latest checkpoint link at {latest_link}")
if __name__ == "__main__":
from voxcpm.training.config import load_yaml_config
args = argbind.parse_args()
config_file = args.get("config_path")
# If YAML config provided, use YAML args to call train
if config_file:
yaml_args = load_yaml_config(config_file)
train(**yaml_args)
else:
# Otherwise use command line args (parsed by argbind)
with argbind.scope(args):
train()