mirror of
https://github.com/OpenBMB/VoxCPM
synced 2025-12-12 11:58:11 +00:00
215 lines
7.1 KiB
Python
215 lines
7.1 KiB
Python
import math
|
||
from dataclasses import dataclass
|
||
from typing import Dict, List, Optional, Tuple
|
||
|
||
import argbind
|
||
import torch
|
||
from datasets import Audio, Dataset, DatasetDict, load_dataset
|
||
from torch.utils.data import Dataset as TorchDataset
|
||
|
||
from ..model.voxcpm import VoxCPMConfig
|
||
from ..modules.audiovae import AudioVAE
|
||
from .packers import AudioFeatureProcessingPacker
|
||
|
||
|
||
DEFAULT_TEXT_COLUMN = "text"
|
||
DEFAULT_AUDIO_COLUMN = "audio"
|
||
DEFAULT_ID_COLUMN = "dataset_id"
|
||
|
||
|
||
@argbind.bind()
|
||
def load_audio_text_datasets(
|
||
train_manifest: str,
|
||
val_manifest: str = "",
|
||
text_column: str = DEFAULT_TEXT_COLUMN,
|
||
audio_column: str = DEFAULT_AUDIO_COLUMN,
|
||
dataset_id_column: str = DEFAULT_ID_COLUMN,
|
||
sample_rate: int = 16_000,
|
||
num_proc: int = 1,
|
||
) -> Tuple[Dataset, Optional[Dataset]]:
|
||
data_files = {"train": train_manifest}
|
||
if val_manifest:
|
||
data_files["validation"] = val_manifest
|
||
|
||
dataset_dict: DatasetDict = load_dataset("json", data_files=data_files)
|
||
|
||
def prepare(ds: Dataset) -> Dataset:
|
||
if audio_column not in ds.column_names:
|
||
raise ValueError(f"Expected '{audio_column}' column in manifest.")
|
||
# We cast to Audio to ensure proper handling during training,
|
||
# but for length calculation we might need raw path or duration if available.
|
||
# HF datasets usually don't compute duration automatically for 'Audio' column.
|
||
ds = ds.cast_column(audio_column, Audio(sampling_rate=sample_rate))
|
||
if audio_column != DEFAULT_AUDIO_COLUMN:
|
||
ds = ds.rename_column(audio_column, DEFAULT_AUDIO_COLUMN)
|
||
if text_column != DEFAULT_TEXT_COLUMN:
|
||
ds = ds.rename_column(text_column, DEFAULT_TEXT_COLUMN)
|
||
if dataset_id_column and dataset_id_column in ds.column_names:
|
||
if dataset_id_column != DEFAULT_ID_COLUMN:
|
||
ds = ds.rename_column(dataset_id_column, DEFAULT_ID_COLUMN)
|
||
else:
|
||
ds = ds.add_column(DEFAULT_ID_COLUMN, [0] * len(ds))
|
||
return ds
|
||
|
||
train_ds = prepare(dataset_dict["train"])
|
||
val_ds = prepare(dataset_dict["validation"]) if "validation" in dataset_dict else None
|
||
return train_ds, val_ds
|
||
|
||
|
||
def compute_sample_lengths(
|
||
ds: Dataset,
|
||
audio_vae_fps: int = 25,
|
||
patch_size: int = 1,
|
||
) -> List[int]:
|
||
"""
|
||
预估每个样本经过 packer 之后的大致序列长度(text+audio),用于过滤超长样本。
|
||
|
||
逻辑与 AudioFeatureProcessingPacker / AudioVAE 一致:
|
||
- 文本长度: len(text_ids)
|
||
- 音频长度:
|
||
duration(s) * audio_vae_fps -> 近似 VAE 帧数 t_vae
|
||
t_seq = ceil(t_vae / patch_size)
|
||
- 序列总长约为: text_len + t_seq + 2
|
||
"""
|
||
lengths: List[int] = []
|
||
|
||
has_duration = "duration" in ds.column_names
|
||
|
||
for i in range(len(ds)):
|
||
item = ds[i]
|
||
text_len = len(item["text_ids"])
|
||
|
||
# 音频时长(尽量不解码;若 manifest 里已有 duration 列则优先使用)
|
||
if has_duration:
|
||
duration = float(item["duration"])
|
||
else:
|
||
audio = item[DEFAULT_AUDIO_COLUMN]
|
||
duration = len(audio["array"]) / float(audio["sampling_rate"])
|
||
|
||
t_vae = math.ceil(duration * audio_vae_fps)
|
||
t_seq = math.ceil(t_vae / patch_size)
|
||
|
||
total_len = text_len + t_seq + 2
|
||
lengths.append(total_len)
|
||
|
||
return lengths
|
||
|
||
|
||
class HFVoxCPMDataset(TorchDataset):
|
||
"""
|
||
Thin wrapper around a tokenized HuggingFace dataset that returns
|
||
PyTorch-friendly samples.
|
||
"""
|
||
|
||
def __init__(self, dataset: Dataset):
|
||
self.dataset = dataset
|
||
|
||
def __len__(self):
|
||
return len(self.dataset)
|
||
|
||
def __getitem__(self, idx: int):
|
||
item = self.dataset[idx]
|
||
audio = item[DEFAULT_AUDIO_COLUMN]
|
||
return {
|
||
"text_ids": item["text_ids"],
|
||
"audio_array": audio["array"],
|
||
"audio_sampling_rate": audio["sampling_rate"],
|
||
"dataset_id": item.get(DEFAULT_ID_COLUMN, 0),
|
||
"is_prompt": item.get("is_prompt", False),
|
||
}
|
||
|
||
@staticmethod
|
||
def pad_sequences(seqs: List[torch.Tensor], pad_value: float):
|
||
if not seqs:
|
||
return torch.empty(0)
|
||
max_len = max(seq.shape[0] for seq in seqs)
|
||
padded = []
|
||
for seq in seqs:
|
||
if seq.shape[0] < max_len:
|
||
pad_width = (0, max_len - seq.shape[0])
|
||
seq = torch.nn.functional.pad(seq, pad_width, value=pad_value)
|
||
padded.append(seq)
|
||
return torch.stack(padded)
|
||
|
||
@classmethod
|
||
def collate_fn(cls, batch: List[Dict]):
|
||
text_tensors = [torch.tensor(sample["text_ids"], dtype=torch.int32) for sample in batch]
|
||
audio_tensors = [torch.tensor(sample["audio_array"], dtype=torch.float32) for sample in batch]
|
||
dataset_ids = torch.tensor([sample["dataset_id"] for sample in batch], dtype=torch.int32)
|
||
is_prompts = [bool(sample.get("is_prompt", False)) for sample in batch]
|
||
|
||
text_padded = cls.pad_sequences(text_tensors, pad_value=-100)
|
||
audio_padded = cls.pad_sequences(audio_tensors, pad_value=-100.0)
|
||
task_ids = torch.ones(text_padded.size(0), dtype=torch.int32)
|
||
|
||
return {
|
||
"text_tokens": text_padded,
|
||
"audio_tokens": audio_padded,
|
||
"task_ids": task_ids,
|
||
"dataset_ids": dataset_ids,
|
||
"is_prompts": is_prompts,
|
||
}
|
||
|
||
|
||
class BatchProcessor:
|
||
"""
|
||
Wraps ``AudioFeatureProcessingPacker`` so the training loop can mirror
|
||
the minicpm-audio mechanics.
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
*,
|
||
config: VoxCPMConfig,
|
||
audio_vae: AudioVAE,
|
||
dataset_cnt: int,
|
||
device: torch.device,
|
||
):
|
||
self.device = device
|
||
self.dataset_cnt = dataset_cnt
|
||
self.audio_vae = audio_vae
|
||
self.audio_vae.to(device)
|
||
self.packer = AudioFeatureProcessingPacker(
|
||
dataset_cnt=dataset_cnt,
|
||
max_len=config.max_length,
|
||
patch_size=config.patch_size,
|
||
feat_dim=config.feat_dim,
|
||
audio_vae=self.audio_vae,
|
||
)
|
||
|
||
def __call__(self, batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||
audio_tokens = batch["audio_tokens"].to(self.device)
|
||
text_tokens = batch["text_tokens"].to(self.device)
|
||
task_ids = batch["task_ids"].to(self.device)
|
||
dataset_ids = batch["dataset_ids"].to(self.device)
|
||
|
||
packed = self.packer(
|
||
audio_tokens=audio_tokens,
|
||
text_tokens=text_tokens,
|
||
task_ids=task_ids,
|
||
dataset_ids=dataset_ids,
|
||
is_prompts=batch["is_prompts"],
|
||
)
|
||
return packed
|
||
|
||
|
||
def build_dataloader(
|
||
hf_dataset: Dataset,
|
||
*,
|
||
accelerator,
|
||
batch_size: int,
|
||
num_workers: int,
|
||
drop_last: bool = False,
|
||
) -> torch.utils.data.DataLoader:
|
||
torch_dataset = HFVoxCPMDataset(hf_dataset)
|
||
# Standard padding-based batching; Accelerator will attach DistributedSampler if needed.
|
||
return accelerator.prepare_dataloader(
|
||
torch_dataset,
|
||
batch_size=batch_size,
|
||
num_workers=num_workers,
|
||
shuffle=True,
|
||
collate_fn=HFVoxCPMDataset.collate_fn,
|
||
drop_last=drop_last,
|
||
)
|
||
|