274 lines
12 KiB
Python
274 lines
12 KiB
Python
import os
|
||
import numpy as np
|
||
import torch
|
||
import gradio as gr
|
||
import spaces
|
||
from typing import Optional, Tuple
|
||
from funasr import AutoModel
|
||
from pathlib import Path
|
||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||
if os.environ.get("HF_REPO_ID", "").strip() == "":
|
||
os.environ["HF_REPO_ID"] = "openbmb/VoxCPM-0.5B"
|
||
|
||
import voxcpm
|
||
|
||
|
||
class VoxCPMDemo:
|
||
def __init__(self) -> None:
|
||
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||
print(f"🚀 Running on device: {self.device}")
|
||
|
||
# ASR model for prompt text recognition
|
||
self.asr_model_id = "iic/SenseVoiceSmall"
|
||
self.asr_model: Optional[AutoModel] = AutoModel(
|
||
model=self.asr_model_id,
|
||
disable_update=True,
|
||
log_level='DEBUG',
|
||
device="cuda:0" if self.device == "cuda" else "cpu",
|
||
)
|
||
|
||
# TTS model (lazy init)
|
||
self.voxcpm_model: Optional[voxcpm.VoxCPM] = None
|
||
self.default_local_model_dir = "./models/VoxCPM-0.5B"
|
||
|
||
# ---------- Model helpers ----------
|
||
def _resolve_model_dir(self) -> str:
|
||
"""
|
||
Resolve model directory:
|
||
1) Use local checkpoint directory if exists
|
||
2) If HF_REPO_ID env is set, download into models/{repo}
|
||
3) Fallback to 'models'
|
||
"""
|
||
if os.path.isdir(self.default_local_model_dir):
|
||
return self.default_local_model_dir
|
||
|
||
repo_id = os.environ.get("HF_REPO_ID", "").strip()
|
||
if len(repo_id) > 0:
|
||
target_dir = os.path.join("models", repo_id.replace("/", "__"))
|
||
if not os.path.isdir(target_dir):
|
||
try:
|
||
from huggingface_hub import snapshot_download # type: ignore
|
||
os.makedirs(target_dir, exist_ok=True)
|
||
print(f"Downloading model from HF repo '{repo_id}' to '{target_dir}' ...")
|
||
snapshot_download(repo_id=repo_id, local_dir=target_dir, local_dir_use_symlinks=False)
|
||
except Exception as e:
|
||
print(f"Warning: HF download failed: {e}. Falling back to 'data'.")
|
||
return "models"
|
||
return target_dir
|
||
return "models"
|
||
|
||
def get_or_load_voxcpm(self) -> voxcpm.VoxCPM:
|
||
if self.voxcpm_model is not None:
|
||
return self.voxcpm_model
|
||
print("Model not loaded, initializing...")
|
||
model_dir = self._resolve_model_dir()
|
||
print(f"Using model dir: {model_dir}")
|
||
self.voxcpm_model = voxcpm.VoxCPM(voxcpm_model_path=model_dir)
|
||
print("Model loaded successfully.")
|
||
return self.voxcpm_model
|
||
|
||
# ---------- Functional endpoints ----------
|
||
def prompt_wav_recognition(self, prompt_wav: Optional[str]) -> str:
|
||
if prompt_wav is None:
|
||
return ""
|
||
res = self.asr_model.generate(input=prompt_wav, language="auto", use_itn=True)
|
||
text = res[0]["text"].split('|>')[-1]
|
||
return text
|
||
|
||
def generate_tts_audio(
|
||
self,
|
||
text_input: str,
|
||
prompt_wav_path_input: Optional[str] = None,
|
||
prompt_text_input: Optional[str] = None,
|
||
cfg_value_input: float = 2.0,
|
||
inference_timesteps_input: int = 10,
|
||
do_normalize: bool = True,
|
||
denoise: bool = True,
|
||
) -> Tuple[int, np.ndarray]:
|
||
"""
|
||
Generate speech from text using VoxCPM; optional reference audio for voice style guidance.
|
||
Returns (sample_rate, waveform_numpy)
|
||
"""
|
||
current_model = self.get_or_load_voxcpm()
|
||
|
||
text = (text_input or "").strip()
|
||
if len(text) == 0:
|
||
raise ValueError("Please input text to synthesize.")
|
||
|
||
prompt_wav_path = prompt_wav_path_input if prompt_wav_path_input else None
|
||
prompt_text = prompt_text_input if prompt_text_input else None
|
||
|
||
print(f"Generating audio for text: '{text[:60]}...'")
|
||
wav = current_model.generate(
|
||
text=text,
|
||
prompt_text=prompt_text,
|
||
prompt_wav_path=prompt_wav_path,
|
||
cfg_value=float(cfg_value_input),
|
||
inference_timesteps=int(inference_timesteps_input),
|
||
normalize=do_normalize,
|
||
denoise=denoise,
|
||
)
|
||
return (16000, wav)
|
||
|
||
|
||
# ---------- UI Builders ----------
|
||
|
||
def create_demo_interface(demo: VoxCPMDemo):
|
||
"""Build the Gradio UI for VoxCPM demo."""
|
||
# static assets (logo path)
|
||
gr.set_static_paths(paths=[Path.cwd().absolute()/"assets"])
|
||
|
||
with gr.Blocks(
|
||
theme=gr.themes.Soft(
|
||
primary_hue="blue",
|
||
secondary_hue="gray",
|
||
neutral_hue="slate",
|
||
font=[gr.themes.GoogleFont("Inter"), "Arial", "sans-serif"]
|
||
),
|
||
css="""
|
||
.logo-container {
|
||
text-align: center;
|
||
margin: 0.5rem 0 1rem 0;
|
||
}
|
||
.logo-container img {
|
||
height: 80px;
|
||
width: auto;
|
||
max-width: 200px;
|
||
display: inline-block;
|
||
}
|
||
/* Bold accordion labels */
|
||
#acc_quick details > summary,
|
||
#acc_tips details > summary {
|
||
font-weight: 600 !important;
|
||
font-size: 1.1em !important;
|
||
}
|
||
/* Bold labels for specific checkboxes */
|
||
#chk_denoise label,
|
||
#chk_denoise span,
|
||
#chk_normalize label,
|
||
#chk_normalize span {
|
||
font-weight: 600;
|
||
}
|
||
"""
|
||
) as interface:
|
||
# Header logo
|
||
gr.HTML('<div class="logo-container"><img src="/gradio_api/file=assets/voxcpm_logo.png" alt="VoxCPM Logo"></div>')
|
||
|
||
# Quick Start
|
||
with gr.Accordion("📋 Quick Start Guide |快速入门", open=False, elem_id="acc_quick"):
|
||
gr.Markdown("""
|
||
### How to Use |使用说明
|
||
1. **(Optional) Provide a Voice Prompt** - Upload or record an audio clip to provide the desired voice characteristics for synthesis.
|
||
**(可选)提供参考声音** - 上传或录制一段音频,为声音合成提供音色、语调和情感等个性化特征
|
||
2. **(Optional) Enter prompt text** - If you provided a voice prompt, enter the corresponding transcript here (auto-recognition available).
|
||
**(可选项)输入参考文本** - 如果提供了参考语音,请输入其对应的文本内容(支持自动识别)。
|
||
3. **Enter target text** - Type the text you want the model to speak.
|
||
**输入目标文本** - 输入您希望模型朗读的文字内容。
|
||
4. **Generate Speech** - Click the "Generate" button to create your audio.
|
||
**生成语音** - 点击"生成"按钮,即可为您创造出音频。
|
||
""")
|
||
|
||
# Pro Tips
|
||
with gr.Accordion("💡 Pro Tips |使用建议", open=False, elem_id="acc_tips"):
|
||
gr.Markdown("""
|
||
### Prompt Speech Enhancement|参考语音降噪
|
||
- **Enable** to remove background noise for a clean, studio-like voice, with an external ZipEnhancer component.
|
||
**启用**:通过 ZipEnhancer 组件消除背景噪音,获得更好的音质。
|
||
- **Disable** to preserve the original audio's background atmosphere.
|
||
**禁用**:保留原始音频的背景环境声,如果想复刻相应声学环境。
|
||
|
||
### Text Normalization|文本正则化
|
||
- **Enable** to process general text with an external WeTextProcessing component.
|
||
**启用**:使用 WeTextProcessing 组件,可处理常见文本。
|
||
- **Disable** to use VoxCPM's native text understanding ability. For example, it supports phonemes input ({HH AH0 L OW1}), try it!
|
||
**禁用**:将使用 VoxCPM 内置的文本理解能力。如,支持音素输入(如 {da4}{jia1}好)和公式符号合成,尝试一下!
|
||
|
||
### CFG Value|CFG 值
|
||
- **Lower CFG** if the voice prompt sounds strained or expressive.
|
||
**调低**:如果提示语音听起来不自然或过于夸张。
|
||
- **Higher CFG** for better adherence to the prompt speech style or input text.
|
||
**调高**:为更好地贴合提示音频的风格或输入文本。
|
||
|
||
### Inference Timesteps|推理时间步
|
||
- **Lower** for faster synthesis speed.
|
||
**调低**:合成速度更快。
|
||
- **Higher** for better synthesis quality.
|
||
**调高**:合成质量更佳。
|
||
""")
|
||
|
||
# Main controls
|
||
with gr.Row():
|
||
with gr.Column():
|
||
prompt_wav = gr.Audio(
|
||
sources=["upload", 'microphone'],
|
||
type="filepath",
|
||
label="Prompt Speech (Optional, or let VoxCPM improvise)",
|
||
value="./examples/example.wav",
|
||
)
|
||
DoDenoisePromptAudio = gr.Checkbox(
|
||
value=False,
|
||
label="Prompt Speech Enhancement",
|
||
elem_id="chk_denoise",
|
||
info="We use ZipEnhancer model to denoise the prompt audio."
|
||
)
|
||
with gr.Row():
|
||
prompt_text = gr.Textbox(
|
||
value="Just by listening a few minutes a day, you'll be able to eliminate negative thoughts by conditioning your mind to be more positive.",
|
||
label="Prompt Text",
|
||
placeholder="Please enter the prompt text. Automatic recognition is supported, and you can correct the results yourself..."
|
||
)
|
||
run_btn = gr.Button("Generate Speech", variant="primary")
|
||
|
||
with gr.Column():
|
||
cfg_value = gr.Slider(
|
||
minimum=1.0,
|
||
maximum=3.0,
|
||
value=2.0,
|
||
step=0.1,
|
||
label="CFG Value (Guidance Scale)",
|
||
info="Higher values increase adherence to prompt, lower values allow more creativity"
|
||
)
|
||
inference_timesteps = gr.Slider(
|
||
minimum=4,
|
||
maximum=30,
|
||
value=10,
|
||
step=1,
|
||
label="Inference Timesteps",
|
||
info="Number of inference timesteps for generation (higher values may improve quality but slower)"
|
||
)
|
||
with gr.Row():
|
||
text = gr.Textbox(
|
||
value="VoxCPM is an innovative end-to-end TTS model from ModelBest, designed to generate highly realistic speech.",
|
||
label="Target Text",
|
||
)
|
||
with gr.Row():
|
||
DoNormalizeText = gr.Checkbox(
|
||
value=False,
|
||
label="Text Normalization",
|
||
elem_id="chk_normalize",
|
||
info="We use wetext library to normalize the input text."
|
||
)
|
||
audio_output = gr.Audio(label="Output Audio")
|
||
|
||
# Wiring
|
||
run_btn.click(
|
||
fn=demo.generate_tts_audio,
|
||
inputs=[text, prompt_wav, prompt_text, cfg_value, inference_timesteps, DoNormalizeText, DoDenoisePromptAudio],
|
||
outputs=[audio_output],
|
||
show_progress=True,
|
||
api_name="generate",
|
||
)
|
||
prompt_wav.change(fn=demo.prompt_wav_recognition, inputs=[prompt_wav], outputs=[prompt_text])
|
||
|
||
return interface
|
||
|
||
|
||
def run_demo(server_name: str = "localhost", server_port: int = 7860, show_error: bool = True):
|
||
demo = VoxCPMDemo()
|
||
interface = create_demo_interface(demo)
|
||
# Recommended to enable queue on Spaces for better throughput
|
||
interface.queue(max_size=10).launch(server_name=server_name, server_port=server_port, show_error=show_error)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
run_demo() |