Files
django-vue3-admin-gd/ai_service/models/ai.py
2025-07-18 22:14:37 +08:00

253 lines
8.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
from sqlalchemy import (
Column, Integer, String, Text, DateTime, Boolean, Float, ForeignKey
)
from sqlalchemy.orm import relationship, declarative_base
from db.session import Base
from models.base import CoreModel
from models.user import DjangoUser # 确保导入 DjangoUser
# 状态选择类(示例)
class CommonStatus:
DISABLED = 0
ENABLED = 1
@staticmethod
def choices():
return [(0, '禁用'), (1, '启用')]
# 平台选择类(示例)
class PlatformChoices:
OPENAI = 'openai'
ALIMNS = 'alimns'
@staticmethod
def choices():
return [('openai', 'OpenAI'), ('alimns', '阿里云MNS')]
# 消息类型选择类(示例)
class MessageType:
SYSTEM = "system" # 系统指令
USER = "user" # 用户消息
ASSISTANT = "assistant" # 助手回复
FUNCTION = "function" # 函数返回结果
@staticmethod
def choices():
"""返回可用的消息角色选项"""
return [
(MessageType.SYSTEM, "系统"),
(MessageType.USER, "用户"),
(MessageType.ASSISTANT, "助手"),
(MessageType.FUNCTION, "函数")
]
class MessageContentType:
"""消息内容类型"""
TEXT = "text"
FUNCTION_CALL = "function_call"
@staticmethod
def choices():
"""返回可用的内容类型选项"""
return [
(MessageContentType.TEXT, "文本"),
(MessageContentType.FUNCTION_CALL, "函数调用")
]
# AI API 密钥表
class AIApiKey(CoreModel):
__tablename__ = 'ai_api_key'
name = Column(String(255), nullable=False)
platform = Column(String(100), nullable=False)
api_key = Column(String(255), nullable=False)
url = Column(String(255), nullable=True)
status = Column(Integer, default=CommonStatus.DISABLED)
def __str__(self):
return self.name
# AI 模型表
class AIModel(CoreModel):
__tablename__ = 'ai_model'
name = Column(String(64), nullable=False)
sort = Column(Integer, default=0)
status = Column(Integer, default=CommonStatus.DISABLED)
key_id = Column(Integer, ForeignKey('ai_api_key.id'), nullable=False)
model_type = Column(String(32), nullable=True)
platform = Column(String(32), nullable=False)
model = Column(String(64), nullable=False)
temperature = Column(Float, nullable=True)
max_tokens = Column(Integer, nullable=True)
max_contexts = Column(Integer, nullable=True)
key = relationship('AIApiKey', backref='models')
def __str__(self):
return self.name
# AI 工具表
class Tool(CoreModel):
__tablename__ = 'ai_tool'
name = Column(String(128), nullable=False)
description = Column(String(256), nullable=True)
status = Column(Integer, default=0)
def __str__(self):
return self.name
# AI 知识库表
class Knowledge(CoreModel):
__tablename__ = 'ai_knowledge'
name = Column(String(255), nullable=False)
description = Column(Text, nullable=True)
embedding_model_id = Column(Integer, ForeignKey('ai_model.id'), nullable=False)
embedding_model = Column(String(32), nullable=False)
top_k = Column(Integer, default=0)
similarity_threshold = Column(Float, nullable=False)
status = Column(Integer, default=CommonStatus.DISABLED)
embedding_model_rel = relationship('AIModel', backref='knowledges')
documents = relationship('KnowledgeDocument', backref='knowledge', cascade='all, delete-orphan')
segments = relationship('KnowledgeSegment', backref='knowledge', cascade='all, delete-orphan')
roles = relationship('ChatRole', secondary='ai_chat_role_knowledge', backref='knowledges')
def __str__(self):
return self.name
# AI 知识库文档表
class KnowledgeDocument(CoreModel):
__tablename__ = 'ai_knowledge_document'
knowledge_id = Column(Integer, ForeignKey('ai_knowledge.id'), nullable=False)
name = Column(String(255), nullable=False)
url = Column(String(1024), nullable=False)
content = Column(Text, nullable=False)
content_length = Column(Integer, nullable=False)
tokens = Column(Integer, nullable=False)
segment_max_tokens = Column(Integer, nullable=False)
retrieval_count = Column(Integer, default=0)
status = Column(Integer, default=CommonStatus.DISABLED)
segments = relationship('KnowledgeSegment', backref='document', cascade='all, delete-orphan')
def __str__(self):
return self.name
# AI 知识库分段表
class KnowledgeSegment(CoreModel):
__tablename__ = 'ai_knowledge_segment'
knowledge_id = Column(Integer, ForeignKey('ai_knowledge.id'), nullable=False)
document_id = Column(Integer, ForeignKey('ai_knowledge_document.id'), nullable=False)
content = Column(Text, nullable=False)
content_length = Column(Integer, nullable=False)
tokens = Column(Integer, nullable=False)
vector_id = Column(String(100), nullable=True)
retrieval_count = Column(Integer, default=0)
status = Column(Integer, default=CommonStatus.DISABLED)
def __str__(self):
return f"Segment {self.id}"
# AI 聊天角色表
class ChatRole(CoreModel):
__tablename__ = 'ai_chat_role'
name = Column(String(128), nullable=False)
avatar = Column(String(256), nullable=False)
description = Column(String(256), nullable=True)
status = Column(Integer, default=CommonStatus.DISABLED)
sort = Column(Integer, default=0)
public_status = Column(Boolean, default=False)
category = Column(String(32), nullable=True)
model_id = Column(Integer, ForeignKey('ai_model.id'), nullable=False)
system_message = Column(String(1024), nullable=True)
user_id = Column(
Integer,
ForeignKey('system_users.id'), # 假设DjangoUser表名是system_users
nullable=True # 允许为空(如匿名角色)
)
user = relationship(DjangoUser, backref='chat_roles') # 正确DjangoUser 已定义并导入
model = relationship('AIModel', backref='chat_roles')
tools = relationship('Tool', secondary='ai_chat_role_tool', backref='roles')
# conversations = relationship('ChatConversation', backref='role', cascade='all, delete-orphan')
# messages = relationship('ChatMessage', backref='role', cascade='all, delete-orphan')
def __str__(self):
return self.name
# AI 聊天对话表
class ChatConversation(CoreModel):
__tablename__ = 'ai_chat_conversation'
title = Column(String(256), nullable=False)
pinned = Column(Boolean, default=False)
pinned_time = Column(DateTime, nullable=True)
user_id = Column(Integer, ForeignKey('system_users.id'), nullable=True)
role_id = Column(Integer, ForeignKey('ai_chat_role.id'), nullable=True)
model_id = Column(Integer, ForeignKey('ai_model.id'), nullable=False)
model = Column(String(32), nullable=False)
system_message = Column(String(1024), nullable=True)
temperature = Column(Float, nullable=False)
max_tokens = Column(Integer, nullable=False)
max_contexts = Column(Integer, nullable=False)
user = relationship(DjangoUser, backref='conversations') # 正确DjangoUser 已定义并导入
model_rel = relationship('AIModel', backref='conversations')
messages = relationship('ChatMessage', backref='conversation', cascade='all, delete-orphan')
def __str__(self):
return self.title
# AI 聊天消息表
class ChatMessage(CoreModel):
__tablename__ = 'ai_chat_message'
conversation_id = Column(Integer, ForeignKey('ai_chat_conversation.id'), nullable=False)
user_id = Column(Integer, ForeignKey('system_users.id'), nullable=True)
role_id = Column(Integer, ForeignKey('ai_chat_role.id'), nullable=True)
model = Column(String(32), nullable=False)
model_id = Column(Integer, ForeignKey('ai_model.id'), nullable=False)
type = Column(String(16), nullable=False)
reply_id = Column(Integer, nullable=True)
content = Column(String(2048), nullable=False)
use_context = Column(Boolean, default=False)
segment_ids = Column(String(2048), nullable=True)
user = relationship(DjangoUser, backref='messages') # 正确DjangoUser 已定义并导入
model_rel = relationship('AIModel', backref='messages')
def __str__(self):
return self.content[:30]
# 聊天角色与知识库的关联表
class ChatRoleKnowledge(Base):
__tablename__ = 'ai_chat_role_knowledge'
chat_role_id = Column(Integer, ForeignKey('ai_chat_role.id'), primary_key=True)
knowledge_id = Column(Integer, ForeignKey('ai_knowledge.id'), primary_key=True)
# 聊天角色与工具的关联表
class ChatRoleTool(Base):
__tablename__ = 'ai_chat_role_tool'
chat_role_id = Column(Integer, ForeignKey('ai_chat_role.id'), primary_key=True)
tool_id = Column(Integer, ForeignKey('ai_tool.id'), primary_key=True)