10 KiB
VoxCPM Fine-tuning Guide
This guide covers how to fine-tune VoxCPM models with two approaches: full fine-tuning and LoRA fine-tuning.
🎓 SFT (Supervised Fine-Tuning)
Full fine-tuning updates all model parameters. Suitable for:
- 📊 Large, specialized datasets
- 🔄 Cases where significant behavior changes are needed
⚡ LoRA Fine-tuning
LoRA (Low-Rank Adaptation) is a parameter-efficient fine-tuning method that:
- 🎯 Trains only a small number of additional parameters
- 💾 Significantly reduces memory requirements and training time
- 🔀 Supports multiple LoRA adapters with hot-swapping
Table of Contents
Data Preparation
Training data should be prepared as a JSONL manifest file, with one sample per line:
{"audio": "path/to/audio1.wav", "text": "Transcript of audio 1."}
{"audio": "path/to/audio2.wav", "text": "Transcript of audio 2."}
{"audio": "path/to/audio3.wav", "text": "Optional duration field.", "duration": 3.5}
{"audio": "path/to/audio4.wav", "text": "Optional dataset_id for multi-dataset.", "dataset_id": 1}
Required Fields
| Field | Description |
|---|---|
audio |
Path to audio file (absolute or relative) |
text |
Corresponding transcript |
Optional Fields
| Field | Description |
|---|---|
duration |
Audio duration in seconds (speeds up sample filtering) |
dataset_id |
Dataset ID for multi-dataset training (default: 0) |
Requirements
- Audio format: WAV
- Sample rate: 16kHz for VoxCPM-0.5B, 44.1kHz for VoxCPM1.5
- Text: Transcript matching the audio content
See examples/train_data_example.jsonl for a complete example.
Full Fine-tuning
Full fine-tuning updates all model parameters. Suitable for large datasets or when significant behavior changes are needed.
Configuration
Create conf/voxcpm_v1.5/voxcpm_finetune_all.yaml:
pretrained_path: /path/to/VoxCPM1.5/
train_manifest: /path/to/train.jsonl
val_manifest: ""
sample_rate: 44100
batch_size: 16
grad_accum_steps: 1
num_workers: 2
num_iters: 2000
log_interval: 10
valid_interval: 1000
save_interval: 1000
learning_rate: 0.00001 # Use smaller LR for full fine-tuning
weight_decay: 0.01
warmup_steps: 100
max_steps: 2000
max_batch_tokens: 8192
save_path: /path/to/checkpoints/finetune_all
tensorboard: /path/to/logs/finetune_all
lambdas:
loss/diff: 1.0
loss/stop: 1.0
Training
# Single GPU
python scripts/train_voxcpm_finetune.py --config_path conf/voxcpm_v1.5/voxcpm_finetune_all.yaml
# Multi-GPU
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 \
scripts/train_voxcpm_finetune.py --config_path conf/voxcpm_v1.5/voxcpm_finetune_all.yaml
Checkpoint Structure
Full fine-tuning saves a complete model directory that can be loaded directly:
checkpoints/finetune_all/
└── step_0002000/
├── model.safetensors # Model weights (excluding audio_vae)
├── config.json # Model config
├── audiovae.pth # Audio VAE weights
├── tokenizer.json # Tokenizer
├── tokenizer_config.json
├── special_tokens_map.json
├── optimizer.pth
└── scheduler.pth
LoRA Fine-tuning
LoRA (Low-Rank Adaptation) is a parameter-efficient fine-tuning method that trains only a small number of additional parameters, significantly reducing memory requirements.
Configuration
Create conf/voxcpm_v1.5/voxcpm_finetune_lora.yaml:
pretrained_path: /path/to/VoxCPM1.5/
train_manifest: /path/to/train.jsonl
val_manifest: ""
sample_rate: 44100
batch_size: 16
grad_accum_steps: 1
num_workers: 2
num_iters: 2000
log_interval: 10
valid_interval: 1000
save_interval: 1000
learning_rate: 0.0001 # LoRA can use larger LR
weight_decay: 0.01
warmup_steps: 100
max_steps: 2000
max_batch_tokens: 8192
save_path: /path/to/checkpoints/finetune_lora
tensorboard: /path/to/logs/finetune_lora
lambdas:
loss/diff: 1.0
loss/stop: 1.0
# LoRA configuration
lora:
enable_lm: true # Apply LoRA to Language Model
enable_dit: true # Apply LoRA to Diffusion Transformer
enable_proj: false # Apply LoRA to projection layers (optional)
r: 32 # LoRA rank (higher = more capacity)
alpha: 16 # LoRA alpha, scaling = alpha / r
dropout: 0.0
# Target modules
target_modules_lm: ["q_proj", "v_proj", "k_proj", "o_proj"]
target_modules_dit: ["q_proj", "v_proj", "k_proj", "o_proj"]
LoRA Parameters
| Parameter | Description | Recommended |
|---|---|---|
enable_lm |
Apply LoRA to LM (language model) | true |
enable_dit |
Apply LoRA to DiT (diffusion model) | true (required for voice cloning) |
r |
LoRA rank (higher = more capacity) | 16-64 |
alpha |
Scaling factor, scaling = alpha / r |
Usually r/2 or r |
target_modules_* |
Layer names to add LoRA | attention layers |
Training
# Single GPU
python scripts/train_voxcpm_finetune.py --config_path conf/voxcpm_v1.5/voxcpm_finetune_lora.yaml
# Multi-GPU
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 \
scripts/train_voxcpm_finetune.py --config_path conf/voxcpm_v1.5/voxcpm_finetune_lora.yaml
Checkpoint Structure
LoRA training saves only LoRA parameters:
checkpoints/finetune_lora/
└── step_0002000/
├── lora_weights.safetensors # Only lora_A, lora_B parameters
├── optimizer.pth
└── scheduler.pth
Inference
Full Fine-tuning Inference
The checkpoint directory is a complete model, load it directly:
python scripts/test_voxcpm_ft_infer.py \
--ckpt_dir /path/to/checkpoints/finetune_all/step_0002000 \
--text "Hello, this is the fine-tuned model." \
--output output.wav
With voice cloning:
python scripts/test_voxcpm_ft_infer.py \
--ckpt_dir /path/to/checkpoints/finetune_all/step_0002000 \
--text "This is voice cloning result." \
--prompt_audio /path/to/reference.wav \
--prompt_text "Reference audio transcript" \
--output cloned_output.wav
LoRA Inference
LoRA inference requires the training config (for LoRA structure) and LoRA checkpoint:
python scripts/test_voxcpm_lora_infer.py \
--config_path conf/voxcpm_v1.5/voxcpm_finetune_lora.yaml \
--lora_ckpt /path/to/checkpoints/finetune_lora/step_0002000 \
--text "Hello, this is LoRA fine-tuned result." \
--output lora_output.wav
With voice cloning:
python scripts/test_voxcpm_lora_infer.py \
--config_path conf/voxcpm_v1.5/voxcpm_finetune_lora.yaml \
--lora_ckpt /path/to/checkpoints/finetune_lora/step_0002000 \
--text "This is voice cloning with LoRA." \
--prompt_audio /path/to/reference.wav \
--prompt_text "Reference audio transcript" \
--output cloned_output.wav
LoRA Hot-swapping
LoRA supports dynamic loading, unloading, and switching at inference time without reloading the entire model.
API Reference
from voxcpm.core import VoxCPM
from voxcpm.model.voxcpm import LoRAConfig
# 1. Load model with LoRA structure and weights
lora_cfg = LoRAConfig(
enable_lm=True,
enable_dit=True,
r=32,
alpha=16,
target_modules_lm=["q_proj", "v_proj", "k_proj", "o_proj"],
target_modules_dit=["q_proj", "v_proj", "k_proj", "o_proj"],
)
model = VoxCPM.from_pretrained(
hf_model_id="openbmb/VoxCPM1.5", # or local path
load_denoiser=False, # Optional: disable denoiser for faster loading
optimize=True, # Enable torch.compile acceleration
lora_config=lora_cfg,
lora_weights_path="/path/to/lora_checkpoint",
)
# 2. Generate audio
audio = model.generate(
text="Hello, this is LoRA fine-tuned result.",
prompt_wav_path="/path/to/reference.wav", # Optional: for voice cloning
prompt_text="Reference audio transcript", # Optional: for voice cloning
)
# 3. Disable LoRA (use base model only)
model.set_lora_enabled(False)
# 4. Re-enable LoRA
model.set_lora_enabled(True)
# 5. Unload LoRA (reset weights to zero)
model.unload_lora()
# 6. Hot-swap to another LoRA
loaded, skipped = model.load_lora("/path/to/another_lora_checkpoint")
print(f"Loaded {len(loaded)} params, skipped {len(skipped)}")
# 7. Get current LoRA weights
lora_state = model.get_lora_state_dict()
Simplified Usage (Auto LoRA Config)
If you only have LoRA weights and don't need custom config, just provide the path:
from voxcpm.core import VoxCPM
# Auto-create default LoRAConfig when only lora_weights_path is provided
model = VoxCPM.from_pretrained(
hf_model_id="openbmb/VoxCPM1.5",
lora_weights_path="/path/to/lora_checkpoint", # Will auto-create LoRAConfig
)
Method Reference
| Method | Description | torch.compile Compatible |
|---|---|---|
load_lora(path) |
Load LoRA weights from file | ✅ |
set_lora_enabled(bool) |
Enable/disable LoRA | ✅ |
unload_lora() |
Reset LoRA weights to initial values | ✅ |
get_lora_state_dict() |
Get current LoRA weights | ✅ |
lora_enabled |
Property: check if LoRA is configured | ✅ |
FAQ
1. Out of Memory (OOM)
- Increase
grad_accum_steps(gradient accumulation) - Decrease
batch_size - Use LoRA fine-tuning instead of full fine-tuning
- Decrease
max_batch_tokensto filter long samples
2. Poor LoRA Performance
- Increase
r(LoRA rank) - Adjust
alpha(tryalpha = r/2oralpha = r) - Ensure
enable_dit: true(required for voice cloning) - Increase training steps
- Add more target modules
3. Training Not Converging
- Decrease
learning_rate - Increase
warmup_steps - Check data quality
4. LoRA Not Taking Effect at Inference
- Ensure inference config matches training config LoRA parameters
- Check
load_lora()return value -skipped_keysshould be empty - Verify
set_lora_enabled(True)is called
5. Checkpoint Loading Errors
- Full fine-tuning: checkpoint directory should contain
model.safetensors(orpytorch_model.bin),config.json,audiovae.pth - LoRA: checkpoint directory should contain
lora_weights.safetensors(orlora_weights.ckpt)