Files
VoxCPM/conf/voxcpm_v1/voxcpm_finetune_lora.yaml

36 lines
1.1 KiB
YAML

pretrained_path: /path/to/VoxCPM-0.5B/
train_manifest: /path/to/train.jsonl
val_manifest: null
sample_rate: 16000
batch_size: 16
grad_accum_steps: 1 # Gradient accumulation steps, >1 can increase effective batch size without increasing memory
num_workers: 2
num_iters: 2000
log_interval: 10
valid_interval: 1000
save_interval: 1000
learning_rate: 0.0001
weight_decay: 0.01
warmup_steps: 100
max_steps: 2000
max_batch_tokens: 8192 # Example: single batch can have at most 16k tokens, with batch_size=4, each sample can have at most 4096 tokens
save_path: /path/to/checkpoints/finetune_lora
tensorboard: /path/to/logs/finetune_lora
lambdas:
loss/diff: 1.0
loss/stop: 1.0
# LoRA configuration
lora:
enable_lm: true
enable_dit: true
enable_proj: false
r: 32
alpha: 16
dropout: 0.0
# Distribution options (optional)
# - If distribute=false (default): save pretrained_path as base_model in lora_config.json
# - If distribute=true: save hf_model_id as base_model (hf_model_id is required)
# hf_model_id: "openbmb/VoxCPM-0.5B"
# distribute: true