Files
VoxCPM/src/voxcpm/cli.py
2025-09-19 12:53:23 +08:00

300 lines
10 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#!/usr/bin/env python3
"""
VoxCPM Command Line Interface
Unified CLI for voice cloning, direct TTS synthesis, and batch processing.
Usage examples:
# Direct synthesis (single sample)
voxcpm --text "Hello world" --output output.wav
# Voice cloning (with reference audio and text)
voxcpm --text "Hello world" --prompt-audio voice.wav --prompt-text "reference text" --output output.wav --denoise
# Batch processing (each line in the file is one sample)
voxcpm --input texts.txt --output-dir ./outputs/
"""
import argparse
import os
import sys
from pathlib import Path
from typing import Optional, List
import soundfile as sf
from voxcpm.core import VoxCPM
def validate_file_exists(file_path: str, file_type: str = "file") -> Path:
"""Validate that a file exists."""
path = Path(file_path)
if not path.exists():
raise FileNotFoundError(f"{file_type} '{file_path}' does not exist")
return path
def validate_output_path(output_path: str) -> Path:
"""Validate the output path and create parent directories if needed."""
path = Path(output_path)
path.parent.mkdir(parents=True, exist_ok=True)
return path
def load_model(args) -> VoxCPM:
"""Load VoxCPM model.
Prefer --model-path if provided; otherwise use from_pretrained (Hub).
"""
print("Loading VoxCPM model...")
# 兼容旧参数ZIPENHANCER_MODEL_PATH 环境变量作为默认
zipenhancer_path = getattr(args, "zipenhancer_path", None) or os.environ.get(
"ZIPENHANCER_MODEL_PATH", None
)
# Load from local path if provided
if getattr(args, "model_path", None):
try:
model = VoxCPM(
voxcpm_model_path=args.model_path,
zipenhancer_model_path=zipenhancer_path,
enable_denoiser=not getattr(args, "no_denoiser", False),
)
print("Model loaded (local).")
return model
except Exception as e:
print(f"Failed to load model (local): {e}")
sys.exit(1)
# Otherwise, try from_pretrained (Hub); exit on failure
try:
model = VoxCPM.from_pretrained(
hf_model_id=getattr(args, "hf_model_id", "openbmb/VoxCPM-0.5B"),
load_denoiser=not getattr(args, "no_denoiser", False),
zipenhancer_model_id=zipenhancer_path,
cache_dir=getattr(args, "cache_dir", None),
local_files_only=getattr(args, "local_files_only", False),
)
print("Model loaded (from_pretrained).")
return model
except Exception as e:
print(f"Failed to load model (from_pretrained): {e}")
sys.exit(1)
def cmd_clone(args):
"""Voice cloning command."""
# Validate inputs
if not args.text:
print("Error: Please provide text to synthesize (--text)")
sys.exit(1)
if not args.prompt_audio:
print("Error: Voice cloning requires a reference audio (--prompt-audio)")
sys.exit(1)
if not args.prompt_text:
print("Error: Voice cloning requires a reference text (--prompt-text)")
sys.exit(1)
# Validate files
prompt_audio_path = validate_file_exists(args.prompt_audio, "reference audio file")
output_path = validate_output_path(args.output)
# Load model
model = load_model(args)
# Generate audio
print(f"Synthesizing text: {args.text}")
print(f"Reference audio: {prompt_audio_path}")
print(f"Reference text: {args.prompt_text}")
audio_array = model.generate(
text=args.text,
prompt_wav_path=str(prompt_audio_path),
prompt_text=args.prompt_text,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
normalize=args.normalize,
denoise=args.denoise
)
# Save audio
sf.write(str(output_path), audio_array, 16000)
print(f"Saved audio to: {output_path}")
# Stats
duration = len(audio_array) / 16000
print(f"Duration: {duration:.2f}s")
def cmd_synthesize(args):
"""Direct TTS synthesis command."""
# Validate inputs
if not args.text:
print("Error: Please provide text to synthesize (--text)")
sys.exit(1)
# Validate output path
output_path = validate_output_path(args.output)
# Load model
model = load_model(args)
# Generate audio
print(f"Synthesizing text: {args.text}")
audio_array = model.generate(
text=args.text,
prompt_wav_path=None,
prompt_text=None,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
normalize=args.normalize,
denoise=False # 无参考音频时不需要降噪
)
# Save audio
sf.write(str(output_path), audio_array, 16000)
print(f"Saved audio to: {output_path}")
# Stats
duration = len(audio_array) / 16000
print(f"Duration: {duration:.2f}s")
def cmd_batch(args):
"""Batch synthesis command."""
# Validate input file
input_file = validate_file_exists(args.input, "input file")
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
try:
with open(input_file, 'r', encoding='utf-8') as f:
texts = [line.strip() for line in f if line.strip()]
except Exception as e:
print(f"Failed to read input file: {e}")
sys.exit(1)
if not texts:
print("Error: Input file is empty or contains no valid lines")
sys.exit(1)
print(f"Found {len(texts)} lines to process")
model = load_model(args)
prompt_audio_path = None
if args.prompt_audio:
prompt_audio_path = str(validate_file_exists(args.prompt_audio, "reference audio file"))
success_count = 0
for i, text in enumerate(texts, 1):
print(f"\nProcessing {i}/{len(texts)}: {text[:50]}...")
try:
audio_array = model.generate(
text=text,
prompt_wav_path=prompt_audio_path,
prompt_text=args.prompt_text,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
normalize=args.normalize,
denoise=args.denoise and prompt_audio_path is not None
)
output_file = output_dir / f"output_{i:03d}.wav"
sf.write(str(output_file), audio_array, 16000)
duration = len(audio_array) / 16000
print(f" Saved: {output_file} ({duration:.2f}s)")
success_count += 1
except Exception as e:
print(f" Failed: {e}")
continue
print(f"\nBatch finished: {success_count}/{len(texts)} succeeded")
def _build_unified_parser():
"""Build unified argument parser (no subcommands, route by args)."""
parser = argparse.ArgumentParser(
description="VoxCPM CLI (single parser) - voice cloning, direct TTS, and batch processing",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Direct synthesis (single sample)
voxcpm --text "Hello world" --output out.wav
# Voice cloning (reference audio + text)
voxcpm --text "Hello world" --prompt-audio voice.wav --prompt-text "reference text" --output out.wav --denoise
# Batch processing
voxcpm --input texts.txt --output-dir ./outs
# Select model (from Hub)
voxcpm --text "Hello" --output out.wav --hf-model-id openbmb/VoxCPM-0.5B
"""
)
# Task selection (automatic routing by presence of args)
parser.add_argument("--input", "-i", help="Input text file (one line per sample)")
parser.add_argument("--output-dir", "-od", help="Output directory (for batch mode)")
parser.add_argument("--text", "-t", help="Text to synthesize (single-sample mode)")
parser.add_argument("--output", "-o", help="Output audio file path (single-sample mode)")
# Prompt audio (for voice cloning)
parser.add_argument("--prompt-audio", "-pa", help="Reference audio file path")
parser.add_argument("--prompt-text", "-pt", help="Reference text corresponding to the audio")
parser.add_argument("--prompt-file", "-pf", help="Reference text file corresponding to the audio")
parser.add_argument("--denoise", action="store_true", help="Enable prompt speech enhancement (denoising)")
# Generation parameters
parser.add_argument("--cfg-value", type=float, default=2.0, help="CFG guidance scale (default: 2.0)")
parser.add_argument("--inference-timesteps", type=int, default=10, help="Inference steps (default: 10)")
parser.add_argument("--normalize", action="store_true", help="Enable text normalization")
# Model loading parameters
parser.add_argument("--model-path", type=str, help="Local VoxCPM model path (overrides Hub download)")
parser.add_argument("--hf-model-id", type=str, default="openbmb/VoxCPM-0.5B", help="Hugging Face repo id (e.g., openbmb/VoxCPM-0.5B)")
parser.add_argument("--cache-dir", type=str, help="Cache directory for Hub downloads")
parser.add_argument("--local-files-only", action="store_true", help="Use only local files (no network)")
parser.add_argument("--no-denoiser", action="store_true", help="Disable denoiser model loading")
parser.add_argument("--zipenhancer-path", type=str, default="iic/speech_zipenhancer_ans_multiloss_16k_base", help="ZipEnhancer model id or local path (default reads from env)")
return parser
def main():
"""Unified CLI entrypoint: route by provided arguments."""
parser = _build_unified_parser()
args = parser.parse_args()
# Routing: prefer batch → single (clone/direct)
if args.input:
if not args.output_dir:
print("Error: Batch mode requires --output-dir")
parser.print_help()
sys.exit(1)
return cmd_batch(args)
# Single-sample mode
if not args.text or not args.output:
print("Error: Single-sample mode requires --text and --output")
parser.print_help()
sys.exit(1)
# If prompt audio+text provided → voice cloning
if args.prompt_audio or args.prompt_text:
if not args.prompt_text and args.prompt_file:
assert os.path.isfile(args.prompt_file), "Prompt file does not exist or is not accessible."
with open(args.prompt_file, 'r', encoding='utf-8') as f:
args.prompt_text = f.read()
if not args.prompt_audio or not args.prompt_text:
print("Error: Voice cloning requires both --prompt-audio and --prompt-text")
sys.exit(1)
return cmd_clone(args)
# Otherwise → direct synthesis
return cmd_synthesize(args)
if __name__ == "__main__":
main()