#!/usr/bin/env python3 import sys from pathlib import Path project_root = Path(__file__).parent.parent sys.path.insert(0, str(project_root / "src")) import contextlib from typing import Dict, Optional import argbind import torch from tensorboardX import SummaryWriter from torch.optim import AdamW from transformers import get_cosine_schedule_with_warmup try: from safetensors.torch import save_file SAFETENSORS_AVAILABLE = True except ImportError: SAFETENSORS_AVAILABLE = False print("Warning: safetensors not available, will use pytorch format") from voxcpm.model import VoxCPMModel from voxcpm.model.voxcpm import LoRAConfig from voxcpm.training import ( Accelerator, BatchProcessor, TrainingTracker, build_dataloader, load_audio_text_datasets, ) @argbind.bind(without_prefix=True) def train( pretrained_path: str, train_manifest: str, val_manifest: str = "", sample_rate: int = 16_000, batch_size: int = 1, grad_accum_steps: int = 1, num_workers: int = 2, num_iters: int = 100_000, log_interval: int = 100, valid_interval: int = 1_000, save_interval: int = 10_000, learning_rate: float = 1e-4, weight_decay: float = 1e-2, warmup_steps: int = 1_000, max_steps: int = 100_000, max_batch_tokens: int = 0, save_path: str = "checkpoints", tensorboard: str = "", lambdas: Dict[str, float] = {"loss/diff": 1.0, "loss/stop": 1.0}, lora: dict = None, config_path: str = "", ): _ = config_path accelerator = Accelerator(amp=True) save_dir = Path(save_path) tb_dir = Path(tensorboard) if tensorboard else save_dir / "logs" # Only create directories on rank 0 to avoid race conditions if accelerator.rank == 0: save_dir.mkdir(parents=True, exist_ok=True) tb_dir.mkdir(parents=True, exist_ok=True) accelerator.barrier() # Wait for directory creation writer = SummaryWriter(log_dir=str(tb_dir)) if accelerator.rank == 0 else None tracker = TrainingTracker(writer=writer, log_file=str(save_dir / "train.log"), rank=accelerator.rank) base_model = VoxCPMModel.from_local(pretrained_path, optimize=False, training=True, lora_config=LoRAConfig(**lora) if lora else None) tokenizer = base_model.text_tokenizer train_ds, val_ds = load_audio_text_datasets( train_manifest=train_manifest, val_manifest=val_manifest, sample_rate=sample_rate, ) def tokenize(batch): text_list = batch["text"] text_ids = [tokenizer(text) for text in text_list] return {"text_ids": text_ids} train_ds = train_ds.map(tokenize, batched=True, remove_columns=["text"]) if val_ds is not None: val_ds = val_ds.map(tokenize, batched=True, remove_columns=["text"]) dataset_cnt = int(max(train_ds["dataset_id"])) + 1 if "dataset_id" in train_ds.column_names else 1 num_train_samples = len(train_ds) # ------------------------------------------------------------------ # # Optional: filter samples by estimated token count to avoid OOM # Enabled when max_batch_tokens > 0: # max_sample_len = max_batch_tokens // batch_size # Samples exceeding this length will be dropped # ------------------------------------------------------------------ # if max_batch_tokens and max_batch_tokens > 0: from voxcpm.training.data import compute_sample_lengths audio_vae_fps = base_model.audio_vae.sample_rate / base_model.audio_vae.hop_length est_lengths = compute_sample_lengths( train_ds, audio_vae_fps=audio_vae_fps, patch_size=base_model.config.patch_size, ) max_sample_len = max_batch_tokens // batch_size if batch_size > 0 else max(est_lengths) keep_indices = [i for i, L in enumerate(est_lengths) if L <= max_sample_len] if len(keep_indices) < len(train_ds) and accelerator.rank == 0: tracker.print( f"Filtering {len(train_ds) - len(keep_indices)} / {len(train_ds)} " f"training samples longer than {max_sample_len} tokens " f"(max_batch_tokens={max_batch_tokens})." ) train_ds = train_ds.select(keep_indices) train_loader = build_dataloader( train_ds, accelerator=accelerator, batch_size=batch_size, num_workers=num_workers, drop_last=True, ) val_loader = ( build_dataloader( val_ds, accelerator=accelerator, batch_size=batch_size, num_workers=num_workers, drop_last=False, ) if val_ds is not None else None ) batch_processor = BatchProcessor( config=base_model.config, audio_vae=base_model.audio_vae, dataset_cnt=dataset_cnt, device=accelerator.device, ) del base_model.audio_vae model = accelerator.prepare_model(base_model) unwrapped_model = accelerator.unwrap(model) unwrapped_model.train() # Only print param info on rank 0 to avoid cluttered output if accelerator.rank == 0: for name, param in model.named_parameters(): print(name, param.requires_grad) optimizer = AdamW( (p for p in model.parameters() if p.requires_grad), lr=learning_rate, weight_decay=weight_decay, ) # Cosine + warmup scheduler from transformers: # - num_warmup_steps: warmup steps # - num_training_steps: total training steps (outer step count) total_training_steps = max_steps if max_steps > 0 else num_iters scheduler = get_cosine_schedule_with_warmup( optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_training_steps, ) # Manual epoch management instead of itertools.cycle to support DistributedSampler.set_epoch() grad_accum_steps = max(int(grad_accum_steps), 1) data_epoch = 0 train_iter = iter(train_loader) def get_next_batch(): """Get next batch, handles epoch boundary and DistributedSampler.""" nonlocal train_iter, data_epoch try: return next(train_iter) except StopIteration: data_epoch += 1 # Key: set DistributedSampler epoch to ensure different data order each epoch sampler = getattr(train_loader, 'sampler', None) if hasattr(sampler, 'set_epoch'): sampler.set_epoch(data_epoch) train_iter = iter(train_loader) return next(train_iter) with tracker.live(): for step in range(num_iters): tracker.step = step optimizer.zero_grad(set_to_none=True) # Gradient accumulation: accumulate gradients over micro-batches before optimizer step loss_dict = {} for micro_step in range(grad_accum_steps): batch = get_next_batch() processed = batch_processor(batch) # Only sync gradients on the last micro-batch # Use no_sync() for intermediate steps to reduce communication overhead is_last_micro_step = (micro_step == grad_accum_steps - 1) sync_context = contextlib.nullcontext() if is_last_micro_step else accelerator.no_sync() with sync_context: with accelerator.autocast(dtype=torch.bfloat16): outputs = model( processed["text_tokens"], processed["text_mask"], processed["audio_feats"], processed["audio_mask"], processed["loss_mask"], processed["position_ids"], processed["labels"], progress=step / max(1, num_iters), ) total_loss = 0.0 for key, value in outputs.items(): if key.startswith("loss/"): weight = lambdas.get(key, 1.0) loss_value = value * weight / grad_accum_steps total_loss = total_loss + loss_value # Record raw loss from last micro-batch for logging loss_dict[key] = value.detach() # Accumulate gradients (normalized by grad_accum_steps) accelerator.backward(total_loss) # After all micro-batches, do unscale / grad_norm / step scaler = getattr(accelerator, "scaler", None) if scaler is not None: scaler.unscale_(optimizer) # Use large max_norm to only compute grad_norm without actual clipping grad_norm = torch.nn.utils.clip_grad_norm_(unwrapped_model.parameters(), max_norm=1e9) accelerator.step(optimizer) accelerator.update() scheduler.step() if step % log_interval == 0: loss_values = {k: v.item() if isinstance(v, torch.Tensor) else float(v) for k, v in loss_dict.items()} loss_values["lr"] = float(optimizer.param_groups[0]["lr"]) # Approximate epoch: seen samples / total samples (considering grad_accum and batch_size) epoch = (step * grad_accum_steps * batch_size) / max(1, num_train_samples) loss_values["epoch"] = float(epoch) loss_values["grad_norm"] = float(grad_norm) tracker.log_metrics(loss_values, split="train") if val_loader is not None and step % valid_interval == 0 and step != 0: validate(model, val_loader, batch_processor, accelerator, tracker, lambdas) if step % save_interval == 0 and accelerator.rank == 0: save_checkpoint(model, optimizer, scheduler, save_dir, step, pretrained_path) if accelerator.rank == 0: save_checkpoint(model, optimizer, scheduler, save_dir, num_iters, pretrained_path) if writer: writer.close() def validate(model, val_loader, batch_processor, accelerator, tracker, lambdas): model.eval() losses = [] num_batches = 0 max_val_batches = 10 with torch.no_grad(): for batch in val_loader: if num_batches >= max_val_batches: break processed = batch_processor(batch) with accelerator.autocast(dtype=torch.bfloat16): outputs = model( processed["text_tokens"], processed["text_mask"], processed["audio_feats"], processed["audio_mask"], processed["loss_mask"], processed["position_ids"], processed["labels"], progress=0.0, sample_generate=False, ) total = 0.0 for key, value in outputs.items(): if key.startswith("loss/"): total += lambdas.get(key, 1.0) * value losses.append(total.detach()) num_batches += 1 if losses: mean_loss = torch.stack(losses).mean() # All-reduce validation loss across processes for global average accelerator.all_reduce(mean_loss) tracker.log_metrics({"loss": mean_loss.item()}, split="val") model.train() def save_checkpoint(model, optimizer, scheduler, save_dir: Path, step: int, pretrained_path: str = None): """ Save checkpoint with different strategies for full finetune vs LoRA: - Full finetune: save non-vae weights to model.safetensors (or pytorch_model.bin if safetensors unavailable) - LoRA: save only lora weights to lora_weights.safetensors (or lora_weights.ckpt if safetensors unavailable) """ import shutil save_dir.mkdir(parents=True, exist_ok=True) tag = "latest" if step == 0 else f"step_{step:07d}" folder = save_dir / tag folder.mkdir(parents=True, exist_ok=True) unwrapped = model.module if hasattr(model, "module") else model full_state = unwrapped.state_dict() lora_cfg = unwrapped.lora_config if lora_cfg is not None: # LoRA finetune: save only lora_A/lora_B weights state_dict = {k: v for k, v in full_state.items() if "lora_" in k} if SAFETENSORS_AVAILABLE: save_file(state_dict, folder / "lora_weights.safetensors") else: torch.save({"state_dict": state_dict}, folder / "lora_weights.ckpt") else: # Full finetune: save non-vae weights to model.safetensors state_dict = {k: v for k, v in full_state.items() if not k.startswith("audio_vae.")} if SAFETENSORS_AVAILABLE: save_file(state_dict, folder / "model.safetensors") else: torch.save({"state_dict": state_dict}, folder / "pytorch_model.bin") # Copy config files from pretrained path if pretrained_path: pretrained_dir = Path(pretrained_path) files_to_copy = ["config.json", "audiovae.pth", "tokenizer.json", "special_tokens_map.json", "tokenizer_config.json"] for fname in files_to_copy: src = pretrained_dir / fname if src.exists(): shutil.copy2(src, folder / fname) torch.save(optimizer.state_dict(), folder / "optimizer.pth") torch.save(scheduler.state_dict(), folder / "scheduler.pth") if __name__ == "__main__": from voxcpm.training.config import load_yaml_config args = argbind.parse_args() config_file = args.get("config_path") # If YAML config provided, use YAML args to call train if config_file: yaml_args = load_yaml_config(config_file) train(**yaml_args) else: # Otherwise use command line args (parsed by argbind) with argbind.scope(args): train()