10 Commits
1.5.0 ... main

Author SHA1 Message Date
刘鑫
aabda60833 add lora finetune data setting QA 2025-12-10 20:25:24 +08:00
刘鑫
a266c0a88d add lora funetine webUI; optimize lora save and load logic 2025-12-09 21:34:39 +08:00
Labmem-Zhouyx
0779a93697 Merge branch 'main' of https://github.com/OpenBMB/VoxCPM 2025-12-07 02:02:08 +08:00
Labmem-Zhouyx
a1f9d0c3b6 Update: release note 2025-12-07 01:59:53 +08:00
xliucs
aefba63f71 Merge pull request #98 from Ayin1412/main
修复lora/ft测试代码处传参错误的内容
2025-12-06 17:38:19 +08:00
Ayin1412
58717d7d82 修复lora/ft测试代码处传参错误的内容 2025-12-06 14:49:35 +08:00
Labmem-Zhouyx
1b0ff5693c Update: model parameters 2025-12-06 01:22:30 +08:00
Labmem-Zhouyx
762815a5b7 Update: user guides 2025-12-05 23:57:43 +08:00
Labmem-Zhouyx
5b13a35ea6 Update: gradio description 2025-12-05 23:47:35 +08:00
Labmem-Zhouyx
3ba727a615 Update: gradio description 2025-12-05 23:38:04 +08:00
12 changed files with 1616 additions and 76 deletions

View File

@@ -44,13 +44,13 @@ Unlike mainstream approaches that convert speech to discrete tokens, VoxCPM uses
### 📦 Model Versions
See [Release Notes](docs/release_note.md) for details
- **VoxCPM1.5** (Latest):
- Model Params: 750M
- Model Params: 800M
- Sampling rate of AudioVAE: 44100
- Token rate in LM Backbone: 6.25Hz (patch-size=4)
- RTF in a single NVIDIA-RTX 4090 GPU: ~0.15
- **VoxCPM-0.5B** (Original):
- Model Params: 600M
- Model Params: 640M
- Sampling rate of AudioVAE: 16000
- Token rate in LM Backbone: 12.5Hz (patch-size=2)
- RTF in a single NVIDIA-RTX 4090 GPU: 0.17
@@ -210,6 +210,8 @@ We're excited to see the VoxCPM community growing! Here are some amazing project
- **[VoxCPM-NanoVLLM](https://github.com/a710128/nanovllm-voxcpm)** NanoVLLM integration for VoxCPM for faster, high-throughput inference on GPU.
- **[VoxCPM-ONNX](https://github.com/bluryar/VoxCPM-ONNX)** ONNX export for VoxCPM supports faster CPU inference.
- **[VoxCPMANE](https://github.com/0seba/VoxCPMANE)** VoxCPM TTS with Apple Neural Engine backend server.
- **[PR: LoRA finetune web UI (by Ayin1412)](https://github.com/OpenBMB/VoxCPM/pull/100)**
- **[voxcpm_rs](https://github.com/madushan1000/voxcpm_rs)** A re-implementation of VoxCPM-0.5B in Rust.
*Note: The projects are not officially maintained by OpenBMB.*

24
app.py
View File

@@ -172,22 +172,22 @@ def create_demo_interface(demo: VoxCPMDemo):
with gr.Accordion("💡 Pro Tips |使用建议", open=False, elem_id="acc_tips"):
gr.Markdown("""
### Prompt Speech Enhancement参考语音降噪
- **Enable** to remove background noise for a clean, studio-like voice, with an external ZipEnhancer component.
**启用**:通过 ZipEnhancer 组件消除背景噪音,获得更好的音质
- **Disable** to preserve the original audio's background atmosphere.
**禁用**:保留原始音频的背景环境声,如果想复刻相应声学环境
- **Enable** to remove background noise for a clean voice, with an external ZipEnhancer component. However, this will limit the audio sampling rate to 16kHz, restricting the cloning quality ceiling.
**启用**:通过 ZipEnhancer 组件消除背景噪音,但会将音频采样率限制在16kHz限制克隆上限
- **Disable** to preserve the original audio's all information, including background atmosphere, and support audio cloning up to 44.1kHz sampling rate.
**禁用**:保留原始音频的全部信息包括背景环境声最高支持44.1kHz的音频复刻
### Text Normalization文本正则化
- **Enable** to process general text with an external WeTextProcessing component.
**启用**:使用 WeTextProcessing 组件,可处理常见文本。
- **Disable** to use VoxCPM's native text understanding ability. For example, it supports phonemes input ({HH AH0 L OW1}), try it!
**禁用**:将使用 VoxCPM 内置的文本理解能力。如,支持音素输入(如 {da4}{jia1})和公式符号合成,尝试一下!
**启用**:使用 WeTextProcessing 组件,可支持常见文本的正则化处理
- **Disable** to use VoxCPM's native text understanding ability. For example, it supports phonemes input (For Chinese, phonemes are converted using pinyin, {ni3}{hao3}; For English, phonemes are converted using CMUDict, {HH AH0 L OW1}), try it!
**禁用**:将使用 VoxCPM 内置的文本理解能力。如,支持音素输入(如中文转拼音:{ni3}{hao3}英文转CMUDict{HH AH0 L OW1})和公式符号合成,尝试一下!
### CFG ValueCFG 值
- **Lower CFG** if the voice prompt sounds strained or expressive.
**调低**:如果提示语音听起来不自然或过于夸张。
- **Higher CFG** for better adherence to the prompt speech style or input text.
**调高**:为更好地贴合提示音频的风格或输入文本。
- **Lower CFG** if the voice prompt sounds strained or expressive, or instability occurs with long text input.
**调低**:如果提示语音听起来不自然或过于夸张,或者长文本输入出现稳定性问题
- **Higher CFG** for better adherence to the prompt speech style or input text, or instability occurs with too short text input.
**调高**:为更好地贴合提示音频的风格或输入文本 或者极短文本输入出现稳定性问题
### Inference Timesteps推理时间步
- **Lower** for faster synthesis speed.
@@ -267,7 +267,7 @@ def run_demo(server_name: str = "localhost", server_port: int = 7860, show_error
demo = VoxCPMDemo()
interface = create_demo_interface(demo)
# Recommended to enable queue on Spaces for better throughput
interface.queue(max_size=10).launch(server_name=server_name, server_port=server_port, show_error=show_error)
interface.queue(max_size=10, default_concurrency_limit=1).launch(server_name=server_name, server_port=server_port, show_error=show_error)
if __name__ == "__main__":

View File

@@ -19,6 +19,8 @@ tensorboard: /path/to/logs/finetune_lora
lambdas:
loss/diff: 1.0
loss/stop: 1.0
# LoRA configuration
lora:
enable_lm: true
enable_dit: true
@@ -26,3 +28,9 @@ lora:
r: 32
alpha: 16
dropout: 0.0
# Distribution options (optional)
# - If distribute=false (default): save pretrained_path as base_model in lora_config.json
# - If distribute=true: save hf_model_id as base_model (hf_model_id is required)
# hf_model_id: "openbmb/VoxCPM1.5"
# distribute: true

View File

@@ -19,6 +19,8 @@ tensorboard: /path/to/logs/finetune_lora
lambdas:
loss/diff: 1.0
loss/stop: 1.0
# LoRA configuration
lora:
enable_lm: true
enable_dit: true
@@ -26,3 +28,9 @@ lora:
r: 32
alpha: 16
dropout: 0.0
# Distribution options (optional)
# - If distribute=false (default): save pretrained_path as base_model in lora_config.json
# - If distribute=true: save hf_model_id as base_model (hf_model_id is required)
# hf_model_id: "openbmb/VoxCPM-0.5B"
# distribute: true

View File

@@ -19,6 +19,7 @@ LoRA (Low-Rank Adaptation) is a parameter-efficient fine-tuning method that:
## Table of Contents
- [Quick Start: WebUI](#quick-start-webui)
- [Data Preparation](#data-preparation)
- [Full Fine-tuning](#full-fine-tuning)
- [LoRA Fine-tuning](#lora-fine-tuning)
@@ -28,6 +29,31 @@ LoRA (Low-Rank Adaptation) is a parameter-efficient fine-tuning method that:
---
## Quick Start: WebUI
For users who prefer a graphical interface, we provide `lora_ft_webui.py` - a comprehensive WebUI for training and inference:
### Launch WebUI
```bash
python lora_ft_webui.py
```
Then open `http://localhost:7860` in your browser.
### Features
- **🚀 Training Tab**: Configure and start LoRA training with an intuitive interface
- Set training parameters (learning rate, batch size, LoRA rank, etc.)
- Monitor training progress in real-time
- Resume training from existing checkpoints
- **🎵 Inference Tab**: Generate audio with trained models
- Automatic base model loading from LoRA checkpoint config
- Voice cloning with automatic ASR (reference text recognition)
- Hot-swap between multiple LoRA models
- Zero-shot TTS without reference audio
## Data Preparation
Training data should be prepared as a JSONL manifest file, with one sample per line:
@@ -177,6 +203,10 @@ lora:
# Target modules
target_modules_lm: ["q_proj", "v_proj", "k_proj", "o_proj"]
target_modules_dit: ["q_proj", "v_proj", "k_proj", "o_proj"]
# Distribution options (optional)
# hf_model_id: "openbmb/VoxCPM1.5" # HuggingFace ID
# distribute: true # If true, save hf_model_id in lora_config.json
```
### LoRA Parameters
@@ -189,6 +219,15 @@ lora:
| `alpha` | Scaling factor, `scaling = alpha / r` | Usually `r/2` or `r` |
| `target_modules_*` | Layer names to add LoRA | attention layers |
### Distribution Options (Optional)
| Parameter | Description | Default |
|-----------|-------------|---------|
| `hf_model_id` | HuggingFace model ID (e.g., `openbmb/VoxCPM1.5`) | `""` |
| `distribute` | If `true`, save `hf_model_id` as `base_model` in checkpoint; otherwise save local `pretrained_path` | `false` |
> **Note**: If `distribute: true`, `hf_model_id` is required.
### Training
```bash
@@ -202,16 +241,37 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 \
### Checkpoint Structure
LoRA training saves only LoRA parameters:
LoRA training saves LoRA parameters and configuration:
```
checkpoints/finetune_lora/
└── step_0002000/
├── lora_weights.safetensors # Only lora_A, lora_B parameters
├── lora_config.json # LoRA config + base model path
├── optimizer.pth
└── scheduler.pth
```
The `lora_config.json` contains:
```json
{
"base_model": "/path/to/VoxCPM1.5/",
"lora_config": {
"enable_lm": true,
"enable_dit": true,
"r": 32,
"alpha": 16,
...
}
}
```
The `base_model` field contains:
- Local path (default): when `distribute: false` or not set
- HuggingFace ID: when `distribute: true` (e.g., `"openbmb/VoxCPM1.5"`)
This allows loading LoRA checkpoints without the original training config file.
---
## Inference
@@ -240,11 +300,10 @@ python scripts/test_voxcpm_ft_infer.py \
### LoRA Inference
LoRA inference requires the training config (for LoRA structure) and LoRA checkpoint:
LoRA inference only requires the checkpoint directory (base model path and LoRA config are read from `lora_config.json`):
```bash
python scripts/test_voxcpm_lora_infer.py \
--config_path conf/voxcpm_v1.5/voxcpm_finetune_lora.yaml \
--lora_ckpt /path/to/checkpoints/finetune_lora/step_0002000 \
--text "Hello, this is LoRA fine-tuned result." \
--output lora_output.wav
@@ -254,7 +313,6 @@ With voice cloning:
```bash
python scripts/test_voxcpm_lora_infer.py \
--config_path conf/voxcpm_v1.5/voxcpm_finetune_lora.yaml \
--lora_ckpt /path/to/checkpoints/finetune_lora/step_0002000 \
--text "This is voice cloning with LoRA." \
--prompt_audio /path/to/reference.wav \
@@ -262,6 +320,16 @@ python scripts/test_voxcpm_lora_infer.py \
--output cloned_output.wav
```
Override base model path (optional):
```bash
python scripts/test_voxcpm_lora_infer.py \
--lora_ckpt /path/to/checkpoints/finetune_lora/step_0002000 \
--base_model /path/to/another/VoxCPM1.5 \
--text "Use different base model." \
--output output.wav
```
---
## LoRA Hot-swapping
@@ -315,20 +383,39 @@ print(f"Loaded {len(loaded)} params, skipped {len(skipped)}")
lora_state = model.get_lora_state_dict()
```
### Simplified Usage (Auto LoRA Config)
### Simplified Usage (Load from lora_config.json)
If you only have LoRA weights and don't need custom config, just provide the path:
If your checkpoint contains `lora_config.json` (saved by the training script), you can load everything automatically:
```python
import json
from voxcpm.core import VoxCPM
from voxcpm.model.voxcpm import LoRAConfig
# Auto-create default LoRAConfig when only lora_weights_path is provided
# Load config from checkpoint
lora_ckpt_dir = "/path/to/checkpoints/finetune_lora/step_0002000"
with open(f"{lora_ckpt_dir}/lora_config.json") as f:
lora_info = json.load(f)
base_model = lora_info["base_model"]
lora_cfg = LoRAConfig(**lora_info["lora_config"])
# Load model with LoRA
model = VoxCPM.from_pretrained(
hf_model_id="openbmb/VoxCPM1.5",
lora_weights_path="/path/to/lora_checkpoint", # Will auto-create LoRAConfig
hf_model_id=base_model,
lora_config=lora_cfg,
lora_weights_path=lora_ckpt_dir,
)
```
Or use the test script directly:
```bash
python scripts/test_voxcpm_lora_infer.py \
--lora_ckpt /path/to/checkpoints/finetune_lora/step_0002000 \
--text "Hello world"
```
### Method Reference
| Method | Description | torch.compile Compatible |
@@ -343,34 +430,39 @@ model = VoxCPM.from_pretrained(
## FAQ
### 1. Out of Memory (OOM)
### 1. How Much Data is Needed for LoRA Fine-tuning to Converge to a Single Voice?
We have tested with 5 minutes and 10 minutes of data (all audio clips are 3-6s in length). In our experiments, both datasets converged to a single voice after 2000 training steps with default configurations. You can adjust the data amount and training configurations based on your available data and computational resources.
### 2. Out of Memory (OOM)
- Increase `grad_accum_steps` (gradient accumulation)
- Decrease `batch_size`
- Use LoRA fine-tuning instead of full fine-tuning
- Decrease `max_batch_tokens` to filter long samples
### 2. Poor LoRA Performance
### 3. Poor LoRA Performance
- Increase `r` (LoRA rank)
- Adjust `alpha` (try `alpha = r/2` or `alpha = r`)
- Ensure `enable_dit: true` (required for voice cloning)
- Increase training steps
- Add more target modules
### 3. Training Not Converging
### 4. Training Not Converging
- Decrease `learning_rate`
- Increase `warmup_steps`
- Check data quality
### 4. LoRA Not Taking Effect at Inference
### 5. LoRA Not Taking Effect at Inference
- Ensure inference config matches training config LoRA parameters
- Check that `lora_config.json` exists in the checkpoint directory
- Check `load_lora()` return value - `skipped_keys` should be empty
- Verify `set_lora_enabled(True)` is called
### 5. Checkpoint Loading Errors
### 6. Checkpoint Loading Errors
- Full fine-tuning: checkpoint directory should contain `model.safetensors` (or `pytorch_model.bin`), `config.json`, `audiovae.pth`
- LoRA: checkpoint directory should contain `lora_weights.safetensors` (or `lora_weights.ckpt`)
- LoRA: checkpoint directory should contain:
- `lora_weights.safetensors` (or `lora_weights.ckpt`) - LoRA weights
- `lora_config.json` - LoRA config and base model path

View File

@@ -32,6 +32,9 @@ We reduced the token rate in LM backbone from 12.5Hz to 6.25Hz (LocEnc&LocDiT pa
- 📈 Provides a foundation for longer audio generation
- 🏗️ Paves the way for training larger models in the future
**Model Architecture Clarification**: The core architecture of VoxCPM1.5 remains unchanged from the technical report. The key modification is adjusting the patch size of the local modules (LocEnc & LocDiT) from 2 to 4, which reduces the LM processing rate from 12.5Hz to 6.25Hz. Since the local modules now need to handle longer contexts, we expanded their network depth, resulting in a slightly larger overall model parameter count.
**Generation Speed Clarification**: Although the model parameters have increased, VoxCPM1.5 only requires 6.25 tokens to generate 1 second of audio (compared to 12.5 tokens in the previous version). While the displayed generation speed (xx it/s) may appear slower, the actual Real-Time Factor (RTF = audio duration / processing time) shows no difference or may even be faster.
## 🔧 Fine-tuning Support
@@ -82,7 +85,7 @@ We're continuously improving VoxCPM and working on exciting new features:
### Q: Has the stability issue been resolved?
**A:** We have made stability optimizations in VoxCPM1.5, including improvements to the training data and model architecture. Based on community feedback, we collected some stability issues such as:
**A:** We have made stability optimizations in VoxCPM1.5, including improvements to the inference code logic, training data, and model architecture. Based on community feedback, we collected some stability issues such as:
- Increased noise and reverberation
- Audio artifacts (e.g., howling/squealing)
- Unstable speaking rate (speeding up)
@@ -90,7 +93,11 @@ We're continuously improving VoxCPM and working on exciting new features:
- Noise artifacts at the beginning and end of audio
- Synthesis issues with very short texts (e.g., "hello")
While we have made improvements to these issues, they have not been completely resolved and may still occasionally occur, especially with very long or highly expressive inputs. We continue to work on further stability improvements in future versions.
**What we've improved:**
- By adjusting inference code logic and optimizing training data, we have largely fixed the beginning/ending artifacts.
- By reducing the LM processing rate (12.5Hz → 6.25Hz), we have improved stability on longer speech generation cases.
**What remains:** We acknowledge that long speech stability issues have not been completely resolved. Particularly for highly expressive or complex reference speech, error accumulation during autoregressive generation can still occur. We will continue to analyze and optimize this in future versions.
### Q: Does VoxCPM plan to support multilingual TTS?

View File

@@ -23,8 +23,10 @@ This is the secret sauce that gives your audio its unique sound.
### 1. Cooking with a Prompt Speech (Following a Famous Recipe)
- A prompt speech provides the desired acoustic characteristics for VoxCPM. The speaker's timbre, speaking style, and even the background sounds and ambiance will be replicated.
- **For a Clean, Studio-Quality Voice:**
- ✅ Enable "Prompt Speech Enhancement". This acts like a noise filter, removing background hiss and rumble to give you a pure, clean voice clone.
- **For a Clean, Denoising Voice:**
- ✅ Enable "Prompt Speech Enhancement". This acts like a noise filter, removing background hiss and rumble to give you a pure, clean voice clone. However, this will limit the audio sampling rate to 16kHz, restricting the cloning quality ceiling.
- **For High-Quality Audio Cloning (Up to 44.1kHz):**
- ❌ Disable "Prompt Speech Enhancement" to preserve all original audio information, including background atmosphere, and support audio cloning up to 44.1kHz sampling rate.
### 2. Cooking au Naturel (Letting the Model Improvise)
- If no reference is provided, VoxCPM becomes a creative chef! It will infer a fitting speaking style based on the text itself, thanks to the text-smartness of its foundation model, MiniCPM-4.

1253
lora_ft_webui.py Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -114,7 +114,7 @@ def main():
prompt_text=prompt_text,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
max_length=args.max_len,
max_len=args.max_len,
normalize=args.normalize,
denoise=False,
)

View File

@@ -5,7 +5,6 @@ LoRA inference test script.
Usage:
python scripts/test_voxcpm_lora_infer.py \
--config_path conf/voxcpm/voxcpm_finetune_test.yaml \
--lora_ckpt checkpoints/step_0002000 \
--text "Hello, this is LoRA finetuned result." \
--output lora_test.wav
@@ -13,37 +12,39 @@ Usage:
With voice cloning:
python scripts/test_voxcpm_lora_infer.py \
--config_path conf/voxcpm/voxcpm_finetune_test.yaml \
--lora_ckpt checkpoints/step_0002000 \
--text "This is voice cloning result." \
--prompt_audio path/to/ref.wav \
--prompt_text "Reference audio transcript" \
--output lora_clone.wav
Note: The script reads base_model path and lora_config from lora_config.json
in the checkpoint directory (saved automatically during training).
"""
import argparse
import json
from pathlib import Path
import soundfile as sf
from voxcpm.core import VoxCPM
from voxcpm.model.voxcpm import LoRAConfig
from voxcpm.training.config import load_yaml_config
def parse_args():
parser = argparse.ArgumentParser("VoxCPM LoRA inference test")
parser.add_argument(
"--config_path",
type=str,
required=True,
help="Training YAML config path (contains pretrained_path and lora config)",
)
parser.add_argument(
"--lora_ckpt",
type=str,
required=True,
help="LoRA checkpoint directory (contains lora_weights.ckpt with lora_A/lora_B only)",
help="LoRA checkpoint directory (contains lora_weights.safetensors and lora_config.json)",
)
parser.add_argument(
"--base_model",
type=str,
default="",
help="Optional: override base model path (default: read from lora_config.json)",
)
parser.add_argument(
"--text",
@@ -98,26 +99,44 @@ def parse_args():
def main():
args = parse_args()
# 1. Load YAML config
cfg = load_yaml_config(args.config_path)
pretrained_path = cfg["pretrained_path"]
lora_cfg_dict = cfg.get("lora", {}) or {}
lora_cfg = LoRAConfig(**lora_cfg_dict) if lora_cfg_dict else None
# 2. Check LoRA checkpoint
ckpt_dir = args.lora_ckpt
if not Path(ckpt_dir).exists():
# 1. Check LoRA checkpoint directory
ckpt_dir = Path(args.lora_ckpt)
if not ckpt_dir.exists():
raise FileNotFoundError(f"LoRA checkpoint not found: {ckpt_dir}")
# 2. Load lora_config.json from checkpoint
lora_config_path = ckpt_dir / "lora_config.json"
if not lora_config_path.exists():
raise FileNotFoundError(
f"lora_config.json not found in {ckpt_dir}. "
"Make sure the checkpoint was saved with the updated training script."
)
with open(lora_config_path, "r", encoding="utf-8") as f:
lora_info = json.load(f)
# Get base model path (command line arg overrides config)
pretrained_path = args.base_model if args.base_model else lora_info.get("base_model")
if not pretrained_path:
raise ValueError("base_model not found in lora_config.json and --base_model not provided")
# Get LoRA config
lora_cfg_dict = lora_info.get("lora_config", {})
lora_cfg = LoRAConfig(**lora_cfg_dict) if lora_cfg_dict else None
print(f"Loaded config from: {lora_config_path}")
print(f" Base model: {pretrained_path}")
print(f" LoRA config: r={lora_cfg.r}, alpha={lora_cfg.alpha}" if lora_cfg else " LoRA config: None")
# 3. Load model with LoRA (no denoiser)
print(f"[1/2] Loading model with LoRA: {pretrained_path}")
print(f"\n[1/2] Loading model with LoRA: {pretrained_path}")
print(f" LoRA weights: {ckpt_dir}")
model = VoxCPM.from_pretrained(
hf_model_id=pretrained_path,
load_denoiser=False,
optimize=True,
lora_config=lora_cfg,
lora_weights_path=ckpt_dir,
lora_weights_path=str(ckpt_dir),
)
# 4. Synthesize audio
@@ -136,7 +155,7 @@ def main():
prompt_text=prompt_text,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
max_length=args.max_len,
max_len=args.max_len,
normalize=args.normalize,
denoise=False,
)
@@ -153,7 +172,7 @@ def main():
prompt_text=prompt_text,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
max_length=args.max_len,
max_len=args.max_len,
normalize=args.normalize,
denoise=False,
)
@@ -170,7 +189,7 @@ def main():
prompt_text=prompt_text,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
max_length=args.max_len,
max_len=args.max_len,
normalize=args.normalize,
denoise=False,
)
@@ -187,7 +206,7 @@ def main():
prompt_text=prompt_text,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
max_length=args.max_len,
max_len=args.max_len,
normalize=args.normalize,
denoise=False,
)
@@ -197,7 +216,7 @@ def main():
# === Test 5: Hot-reload LoRA (load_lora) ===
print(f"\n [Test 5] Hot-reload LoRA (load_lora)...")
loaded, skipped = model.load_lora(str(ckpt_dir))
loaded, skipped = model.load_lora(ckpt_dir)
print(f" Reloaded {len(loaded)} parameters")
audio_np = model.generate(
text=args.text,
@@ -205,7 +224,7 @@ def main():
prompt_text=prompt_text,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
max_length=args.max_len,
max_len=args.max_len,
normalize=args.normalize,
denoise=False,
)

View File

@@ -14,6 +14,8 @@ import torch
from tensorboardX import SummaryWriter
from torch.optim import AdamW
from transformers import get_cosine_schedule_with_warmup
import signal
import os
try:
from safetensors.torch import save_file
@@ -56,8 +58,16 @@ def train(
lambdas: Dict[str, float] = {"loss/diff": 1.0, "loss/stop": 1.0},
lora: dict = None,
config_path: str = "",
# Distribution options (for LoRA checkpoints)
hf_model_id: str = "", # HuggingFace model ID (e.g., "openbmb/VoxCPM1.5")
distribute: bool = False, # If True, save hf_model_id as base_model; otherwise save pretrained_path
):
_ = config_path
# Validate distribution options
if lora is not None and distribute and not hf_model_id:
raise ValueError("hf_model_id is required when distribute=True")
accelerator = Accelerator(amp=True)
save_dir = Path(save_path)
@@ -171,6 +181,39 @@ def train(
num_training_steps=total_training_steps,
)
# Try to load checkpoint and resume training
start_step = 0
if accelerator.rank == 0:
start_step = load_checkpoint(model, optimizer, scheduler, save_dir)
# Broadcast start_step to all processes
if hasattr(accelerator, 'all_reduce'):
start_step_tensor = torch.tensor(start_step, device=accelerator.device)
accelerator.all_reduce(start_step_tensor)
start_step = int(start_step_tensor.item())
if start_step > 0 and accelerator.rank == 0:
tracker.print(f"Resuming training from step {start_step}")
# Resume tracker for signal handler to read current step
resume = {"step": start_step}
# Register signal handler to save checkpoint on termination (SIGTERM/SIGINT)
def _signal_handler(signum, frame, _model=model, _optim=optimizer, _sched=scheduler, _save_dir=save_dir, _pretrained=pretrained_path, _hf_id=hf_model_id, _dist=distribute, _resume=resume):
try:
cur_step = int(_resume.get("step", start_step))
except Exception:
cur_step = start_step
print(f"Signal {signum} received. Saving checkpoint at step {cur_step} ...")
try:
save_checkpoint(_model, _optim, _sched, _save_dir, cur_step, _pretrained, _hf_id, _dist)
print("Checkpoint saved. Exiting.")
except Exception as e:
print(f"Error saving checkpoint on signal: {e}")
os._exit(0)
signal.signal(signal.SIGTERM, _signal_handler)
signal.signal(signal.SIGINT, _signal_handler)
# Manual epoch management instead of itertools.cycle to support DistributedSampler.set_epoch()
grad_accum_steps = max(int(grad_accum_steps), 1)
data_epoch = 0
@@ -191,7 +234,9 @@ def train(
return next(train_iter)
with tracker.live():
for step in range(num_iters):
for step in range(start_step, num_iters):
# update resume step so signal handler can save current progress
resume["step"] = step
tracker.step = step
optimizer.zero_grad(set_to_none=True)
@@ -255,10 +300,10 @@ def train(
validate(model, val_loader, batch_processor, accelerator, tracker, lambdas)
if step % save_interval == 0 and accelerator.rank == 0:
save_checkpoint(model, optimizer, scheduler, save_dir, step, pretrained_path)
save_checkpoint(model, optimizer, scheduler, save_dir, step, pretrained_path, hf_model_id, distribute)
if accelerator.rank == 0:
save_checkpoint(model, optimizer, scheduler, save_dir, num_iters, pretrained_path)
save_checkpoint(model, optimizer, scheduler, save_dir, num_iters, pretrained_path, hf_model_id, distribute)
if writer:
writer.close()
@@ -301,7 +346,77 @@ def validate(model, val_loader, batch_processor, accelerator, tracker, lambdas):
model.train()
def save_checkpoint(model, optimizer, scheduler, save_dir: Path, step: int, pretrained_path: str = None):
def load_checkpoint(model, optimizer, scheduler, save_dir: Path):
"""
Load the latest checkpoint if it exists.
Returns the step number to resume from, or 0 if no checkpoint found.
"""
latest_folder = save_dir / "latest"
if not latest_folder.exists():
return 0
unwrapped = model.module if hasattr(model, "module") else model
lora_cfg = unwrapped.lora_config
# Load model weights
if lora_cfg is not None:
# LoRA: load lora_weights
lora_weights_path = latest_folder / "lora_weights.safetensors"
if not lora_weights_path.exists():
lora_weights_path = latest_folder / "lora_weights.ckpt"
if lora_weights_path.exists():
if lora_weights_path.suffix == ".safetensors":
from safetensors.torch import load_file
state_dict = load_file(str(lora_weights_path))
else:
ckpt = torch.load(lora_weights_path, map_location="cpu")
state_dict = ckpt.get("state_dict", ckpt)
# Load only lora weights
unwrapped.load_state_dict(state_dict, strict=False)
print(f"Loaded LoRA weights from {lora_weights_path}")
else:
# Full finetune: load model.safetensors or pytorch_model.bin
model_path = latest_folder / "model.safetensors"
if not model_path.exists():
model_path = latest_folder / "pytorch_model.bin"
if model_path.exists():
if model_path.suffix == ".safetensors":
from safetensors.torch import load_file
state_dict = load_file(str(model_path))
else:
ckpt = torch.load(model_path, map_location="cpu")
state_dict = ckpt.get("state_dict", ckpt)
unwrapped.load_state_dict(state_dict, strict=False)
print(f"Loaded model weights from {model_path}")
# Load optimizer state
optimizer_path = latest_folder / "optimizer.pth"
if optimizer_path.exists():
optimizer.load_state_dict(torch.load(optimizer_path, map_location="cpu"))
print(f"Loaded optimizer state from {optimizer_path}")
# Load scheduler state
scheduler_path = latest_folder / "scheduler.pth"
if scheduler_path.exists():
scheduler.load_state_dict(torch.load(scheduler_path, map_location="cpu"))
print(f"Loaded scheduler state from {scheduler_path}")
# Try to infer step from checkpoint folders
step_folders = [d for d in save_dir.iterdir() if d.is_dir() and d.name.startswith("step_")]
if step_folders:
steps = [int(d.name.split("_")[1]) for d in step_folders]
resume_step = max(steps)
print(f"Resuming from step {resume_step}")
return resume_step
return 0
def save_checkpoint(model, optimizer, scheduler, save_dir: Path, step: int, pretrained_path: str = None, hf_model_id: str = "", distribute: bool = False):
"""
Save checkpoint with different strategies for full finetune vs LoRA:
- Full finetune: save non-vae weights to model.safetensors (or pytorch_model.bin if safetensors unavailable)
@@ -325,6 +440,17 @@ def save_checkpoint(model, optimizer, scheduler, save_dir: Path, step: int, pret
save_file(state_dict, folder / "lora_weights.safetensors")
else:
torch.save({"state_dict": state_dict}, folder / "lora_weights.ckpt")
# Save LoRA config and base model path to a separate JSON file
# If distribute=True, save hf_model_id; otherwise save local pretrained_path
import json
base_model_to_save = hf_model_id if distribute else (str(pretrained_path) if pretrained_path else None)
lora_info = {
"base_model": base_model_to_save,
"lora_config": lora_cfg.model_dump() if hasattr(lora_cfg, "model_dump") else vars(lora_cfg),
}
with open(folder / "lora_config.json", "w", encoding="utf-8") as f:
json.dump(lora_info, f, indent=2, ensure_ascii=False)
else:
# Full finetune: save non-vae weights to model.safetensors
state_dict = {k: v for k, v in full_state.items() if not k.startswith("audio_vae.")}
@@ -345,6 +471,29 @@ def save_checkpoint(model, optimizer, scheduler, save_dir: Path, step: int, pret
torch.save(optimizer.state_dict(), folder / "optimizer.pth")
torch.save(scheduler.state_dict(), folder / "scheduler.pth")
# Update (or create) a `latest` symlink pointing to the most recent checkpoint folder
latest_link = save_dir / "latest"
try:
if latest_link.exists() or latest_link.is_symlink():
# remove existing link or directory
if latest_link.is_dir() and not latest_link.is_symlink():
shutil.rmtree(latest_link)
else:
latest_link.unlink()
# Create a symlink pointing to the new folder
os.symlink(str(folder), str(latest_link))
except Exception:
# If symlink creation fails (e.g., on Windows or permission issues), fall back to copying
try:
if latest_link.exists():
if latest_link.is_dir():
shutil.rmtree(latest_link)
else:
latest_link.unlink()
shutil.copytree(folder, latest_link)
except Exception:
print(f"Warning: failed to update latest checkpoint link at {latest_link}")
if __name__ == "__main__":
from voxcpm.training.config import load_yaml_config
@@ -359,4 +508,3 @@ if __name__ == "__main__":
# Otherwise use command line args (parsed by argbind)
with argbind.scope(args):
train()

View File

@@ -55,6 +55,7 @@ class VoxCPM:
self.denoiser = ZipEnhancer(zipenhancer_model_path)
else:
self.denoiser = None
if optimize:
print("Warm up VoxCPMModel...")
self.tts_model.generate(
target_text="Hello, this is the first test sentence.",