mirror of
https://github.com/OpenBMB/VoxCPM
synced 2025-12-12 11:58:11 +00:00
Compare commits
20 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d1bb6aaf41 | ||
|
|
2eb4d39719 | ||
|
|
fbf8984d4e | ||
|
|
41752dc0fa | ||
|
|
b0714adcaa | ||
|
|
89f4d917a0 | ||
|
|
5c5da0dbe6 | ||
|
|
961569e76d | ||
|
|
5f56d5ff5d | ||
|
|
169c17ddfd | ||
|
|
996c69a1a8 | ||
|
|
dc6b6d1d1c | ||
|
|
cef6aefb3d | ||
|
|
1a46c5d1ad | ||
|
|
5257ec3dc5 | ||
|
|
bdd516b579 | ||
|
|
11568f0776 | ||
|
|
e5bcb735f0 | ||
|
|
f26a1ea2f7 | ||
|
|
1fa9e2ca02 |
3
.gitignore
vendored
Normal file
3
.gitignore
vendored
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
launch.json
|
||||||
|
__pycache__
|
||||||
|
voxcpm.egg-info
|
||||||
54
README.md
54
README.md
@@ -1,7 +1,7 @@
|
|||||||
## 🎙️ VoxCPM: Tokenizer-Free TTS for Context-Aware Speech Generation and True-to-Life Voice Cloning
|
## 🎙️ VoxCPM: Tokenizer-Free TTS for Context-Aware Speech Generation and True-to-Life Voice Cloning
|
||||||
|
|
||||||
|
|
||||||
[](https://github.com/OpenBMB/VoxCPM/) [](https://huggingface.co/openbmb/VoxCPM-0.5B) [](https://modelscope.cn/models/OpenBMB/VoxCPM-0.5B) [](https://huggingface.co/spaces/OpenBMB/VoxCPM-Demo) [](https://openbmb.github.io/VoxCPM-demopage)
|
[](https://github.com/OpenBMB/VoxCPM/) [](https://arxiv.org/abs/2509.24650) [](https://huggingface.co/openbmb/VoxCPM-0.5B) [](https://modelscope.cn/models/OpenBMB/VoxCPM-0.5B) [](https://huggingface.co/spaces/OpenBMB/VoxCPM-Demo) [](https://openbmb.github.io/VoxCPM-demopage)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -16,6 +16,7 @@
|
|||||||
</div>
|
</div>
|
||||||
|
|
||||||
## News
|
## News
|
||||||
|
* [2025.09.30] 🔥 🔥 🔥 We Release VoxCPM [Technical Report](https://arxiv.org/abs/2509.24650)!
|
||||||
* [2025.09.16] 🔥 🔥 🔥 We Open Source the VoxCPM-0.5B [weights](https://huggingface.co/openbmb/VoxCPM-0.5B)!
|
* [2025.09.16] 🔥 🔥 🔥 We Open Source the VoxCPM-0.5B [weights](https://huggingface.co/openbmb/VoxCPM-0.5B)!
|
||||||
* [2025.09.16] 🎉 🎉 🎉 We Provide the [Gradio PlayGround](https://huggingface.co/spaces/OpenBMB/VoxCPM-Demo) for VoxCPM-0.5B, try it now!
|
* [2025.09.16] 🎉 🎉 🎉 We Provide the [Gradio PlayGround](https://huggingface.co/spaces/OpenBMB/VoxCPM-Demo) for VoxCPM-0.5B, try it now!
|
||||||
|
|
||||||
@@ -50,7 +51,7 @@ By default, when you first run the script, the model will be downloaded automati
|
|||||||
- Download VoxCPM-0.5B
|
- Download VoxCPM-0.5B
|
||||||
```
|
```
|
||||||
from huggingface_hub import snapshot_download
|
from huggingface_hub import snapshot_download
|
||||||
snapshot_download("openbmb/VoxCPM-0.5B",local_files_only=local_files_only)
|
snapshot_download("openbmb/VoxCPM-0.5B")
|
||||||
```
|
```
|
||||||
- Download ZipEnhancer and SenseVoice-Small. We use ZipEnhancer to enhance speech prompts and SenseVoice-Small for speech prompt ASR in the web demo.
|
- Download ZipEnhancer and SenseVoice-Small. We use ZipEnhancer to enhance speech prompts and SenseVoice-Small for speech prompt ASR in the web demo.
|
||||||
```
|
```
|
||||||
@@ -62,10 +63,12 @@ By default, when you first run the script, the model will be downloaded automati
|
|||||||
### 2. Basic Usage
|
### 2. Basic Usage
|
||||||
```python
|
```python
|
||||||
import soundfile as sf
|
import soundfile as sf
|
||||||
|
import numpy as np
|
||||||
from voxcpm import VoxCPM
|
from voxcpm import VoxCPM
|
||||||
|
|
||||||
model = VoxCPM.from_pretrained("openbmb/VoxCPM-0.5B")
|
model = VoxCPM.from_pretrained("openbmb/VoxCPM-0.5B")
|
||||||
|
|
||||||
|
# Non-streaming
|
||||||
wav = model.generate(
|
wav = model.generate(
|
||||||
text="VoxCPM is an innovative end-to-end TTS model from ModelBest, designed to generate highly expressive speech.",
|
text="VoxCPM is an innovative end-to-end TTS model from ModelBest, designed to generate highly expressive speech.",
|
||||||
prompt_wav_path=None, # optional: path to a prompt speech for voice cloning
|
prompt_wav_path=None, # optional: path to a prompt speech for voice cloning
|
||||||
@@ -81,6 +84,18 @@ wav = model.generate(
|
|||||||
|
|
||||||
sf.write("output.wav", wav, 16000)
|
sf.write("output.wav", wav, 16000)
|
||||||
print("saved: output.wav")
|
print("saved: output.wav")
|
||||||
|
|
||||||
|
# Streaming
|
||||||
|
chunks = []
|
||||||
|
for chunk in model.generate_streaming(
|
||||||
|
text = "Streaming text to speech is easy with VoxCPM!",
|
||||||
|
# supports same args as above
|
||||||
|
):
|
||||||
|
chunks.append(chunk)
|
||||||
|
wav = np.concatenate(chunks)
|
||||||
|
|
||||||
|
sf.write("output_streaming.wav", wav, 16000)
|
||||||
|
print("saved: output_streaming.wav")
|
||||||
```
|
```
|
||||||
|
|
||||||
### 3. CLI Usage
|
### 3. CLI Usage
|
||||||
@@ -98,6 +113,13 @@ voxcpm --text "VoxCPM is an innovative end-to-end TTS model from ModelBest, desi
|
|||||||
--output out.wav \
|
--output out.wav \
|
||||||
--denoise
|
--denoise
|
||||||
|
|
||||||
|
# (Optinal) Voice cloning (reference audio + transcript file)
|
||||||
|
voxcpm --text "VoxCPM is an innovative end-to-end TTS model from ModelBest, designed to generate highly expressive speech." \
|
||||||
|
--prompt-audio path/to/voice.wav \
|
||||||
|
--prompt-file "/path/to/text-file" \
|
||||||
|
--output out.wav \
|
||||||
|
--denoise
|
||||||
|
|
||||||
# 3) Batch processing (one text per line)
|
# 3) Batch processing (one text per line)
|
||||||
voxcpm --input examples/input.txt --output-dir outs
|
voxcpm --input examples/input.txt --output-dir outs
|
||||||
# (optional) Batch + cloning
|
# (optional) Batch + cloning
|
||||||
@@ -174,6 +196,19 @@ Happy creating! 🎉 Start with the default settings and tweak from there to sui
|
|||||||
---
|
---
|
||||||
|
|
||||||
|
|
||||||
|
## 🌟 Community Projects
|
||||||
|
|
||||||
|
We're excited to see the VoxCPM community growing! Here are some amazing projects and features built by our community:
|
||||||
|
|
||||||
|
- **[ComfyUI-VoxCPM](https://github.com/wildminder/ComfyUI-VoxCPM)**
|
||||||
|
- **[ComfyUI-VoxCPMTTS](https://github.com/1038lab/ComfyUI-VoxCPMTTS)**
|
||||||
|
- **[WebUI-VoxCPM](https://github.com/rsxdalv/tts_webui_extension.vox_cpm)**
|
||||||
|
- **[PR: Streaming API Support (by AbrahamSanders)](https://github.com/OpenBMB/VoxCPM/pull/26)**
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
*Have you built something cool with VoxCPM? We'd love to feature it here! Please open an issue or pull request to add your project.*
|
||||||
|
|
||||||
|
|
||||||
## 📊 Performance Highlights
|
## 📊 Performance Highlights
|
||||||
|
|
||||||
@@ -242,7 +277,7 @@ VoxCPM achieves competitive results on public zero-shot TTS benchmarks:
|
|||||||
|
|
||||||
## 📝TO-DO List
|
## 📝TO-DO List
|
||||||
Please stay tuned for updates!
|
Please stay tuned for updates!
|
||||||
- [ ] Release the VoxCPM technical report.
|
- [x] Release the VoxCPM technical report.
|
||||||
- [ ] Support higher sampling rate (next version).
|
- [ ] Support higher sampling rate (next version).
|
||||||
|
|
||||||
|
|
||||||
@@ -267,20 +302,19 @@ This project is developed by the following institutions:
|
|||||||
- <img src="assets/thuhcsi_logo.png" width="28px"> [THUHCSI](https://github.com/thuhcsi)
|
- <img src="assets/thuhcsi_logo.png" width="28px"> [THUHCSI](https://github.com/thuhcsi)
|
||||||
|
|
||||||
|
|
||||||
|
## ⭐ Star History
|
||||||
|
[](https://star-history.com/#OpenBMB/VoxCPM&Date)
|
||||||
|
|
||||||
|
|
||||||
## 📚 Citation
|
## 📚 Citation
|
||||||
|
|
||||||
The techical report is coming soon, please wait for the release 😊
|
|
||||||
|
|
||||||
If you find our model helpful, please consider citing our projects 📝 and staring us ⭐️!
|
If you find our model helpful, please consider citing our projects 📝 and staring us ⭐️!
|
||||||
|
|
||||||
```bib
|
```bib
|
||||||
@misc{voxcpm2025,
|
@article{voxcpm2025,
|
||||||
author = {{Yixuan Zhou, Guoyang Zeng, Xin Liu, Xiang Li, Renjie Yu, Ziyang Wang, Runchuan Ye, Weiyue Sun, Jiancheng Gui, Kehan Li, Zhiyong Wu, Zhiyuan Liu}},
|
title = {VoxCPM: Tokenizer-Free TTS for Context-Aware Speech Generation and True-to-Life Voice Cloning},
|
||||||
title = {{VoxCPM}},
|
author = {Zhou, Yixuan and Zeng, Guoyang and Liu, Xin and Li, Xiang and Yu, Renjie and Wang, Ziyang and Ye, Runchuan and Sun, Weiyue and Gui, Jiancheng and Li, Kehan and Wu, Zhiyong and Liu, Zhiyuan},
|
||||||
|
journal = {arXiv preprint arXiv:2509.24650},
|
||||||
year = {2025},
|
year = {2025},
|
||||||
publish = {\url{https://github.com/OpenBMB/VoxCPM}},
|
|
||||||
note = {GitHub repository}
|
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|||||||
9
app.py
9
app.py
@@ -194,10 +194,6 @@ def create_demo_interface(demo: VoxCPMDemo):
|
|||||||
**调低**:合成速度更快。
|
**调低**:合成速度更快。
|
||||||
- **Higher** for better synthesis quality.
|
- **Higher** for better synthesis quality.
|
||||||
**调高**:合成质量更佳。
|
**调高**:合成质量更佳。
|
||||||
|
|
||||||
### Long Text (e.g., >5 min speech)|长文本 (如 >5分钟的合成语音)
|
|
||||||
While VoxCPM can handle long texts directly, we recommend using empty lines to break very long content into paragraphs; the model will then synthesize each paragraph individually.
|
|
||||||
虽然 VoxCPM 支持直接生成长文本,但如果目标文本过长,我们建议使用换行符将内容分段;模型将对每个段落分别合成。
|
|
||||||
""")
|
""")
|
||||||
|
|
||||||
# Main controls
|
# Main controls
|
||||||
@@ -206,7 +202,7 @@ def create_demo_interface(demo: VoxCPMDemo):
|
|||||||
prompt_wav = gr.Audio(
|
prompt_wav = gr.Audio(
|
||||||
sources=["upload", 'microphone'],
|
sources=["upload", 'microphone'],
|
||||||
type="filepath",
|
type="filepath",
|
||||||
label="Prompt Speech",
|
label="Prompt Speech (Optional, or let VoxCPM improvise)",
|
||||||
value="./examples/example.wav",
|
value="./examples/example.wav",
|
||||||
)
|
)
|
||||||
DoDenoisePromptAudio = gr.Checkbox(
|
DoDenoisePromptAudio = gr.Checkbox(
|
||||||
@@ -244,14 +240,13 @@ def create_demo_interface(demo: VoxCPMDemo):
|
|||||||
text = gr.Textbox(
|
text = gr.Textbox(
|
||||||
value="VoxCPM is an innovative end-to-end TTS model from ModelBest, designed to generate highly realistic speech.",
|
value="VoxCPM is an innovative end-to-end TTS model from ModelBest, designed to generate highly realistic speech.",
|
||||||
label="Target Text",
|
label="Target Text",
|
||||||
info="Default processing splits text on \\n into paragraphs; each is synthesized as a chunk and then concatenated into the final audio."
|
|
||||||
)
|
)
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
DoNormalizeText = gr.Checkbox(
|
DoNormalizeText = gr.Checkbox(
|
||||||
value=False,
|
value=False,
|
||||||
label="Text Normalization",
|
label="Text Normalization",
|
||||||
elem_id="chk_normalize",
|
elem_id="chk_normalize",
|
||||||
info="We use WeTextPorcessing library to normalize the input text."
|
info="We use wetext library to normalize the input text."
|
||||||
)
|
)
|
||||||
audio_output = gr.Audio(label="Output Audio")
|
audio_output = gr.Audio(label="Output Audio")
|
||||||
|
|
||||||
|
|||||||
@@ -20,12 +20,10 @@ classifiers = [
|
|||||||
"Intended Audience :: Developers",
|
"Intended Audience :: Developers",
|
||||||
"Operating System :: OS Independent",
|
"Operating System :: OS Independent",
|
||||||
"Programming Language :: Python :: 3",
|
"Programming Language :: Python :: 3",
|
||||||
"Programming Language :: Python :: 3.8",
|
|
||||||
"Programming Language :: Python :: 3.9",
|
|
||||||
"Programming Language :: Python :: 3.10",
|
"Programming Language :: Python :: 3.10",
|
||||||
"Programming Language :: Python :: 3.11",
|
"Programming Language :: Python :: 3.11",
|
||||||
]
|
]
|
||||||
requires-python = ">=3.8"
|
requires-python = ">=3.10"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"torch>=2.5.0",
|
"torch>=2.5.0",
|
||||||
"torchaudio>=2.5.0",
|
"torchaudio>=2.5.0",
|
||||||
@@ -36,7 +34,7 @@ dependencies = [
|
|||||||
"addict",
|
"addict",
|
||||||
"wetext",
|
"wetext",
|
||||||
"modelscope>=1.22.0",
|
"modelscope>=1.22.0",
|
||||||
"datasets>=2,<4",
|
"datasets>=3,<4",
|
||||||
"huggingface-hub",
|
"huggingface-hub",
|
||||||
"pydantic",
|
"pydantic",
|
||||||
"tqdm",
|
"tqdm",
|
||||||
@@ -78,7 +76,7 @@ version_scheme = "post-release"
|
|||||||
|
|
||||||
[tool.black]
|
[tool.black]
|
||||||
line-length = 120
|
line-length = 120
|
||||||
target-version = ['py38']
|
target-version = ['py310']
|
||||||
include = '\.pyi?$'
|
include = '\.pyi?$'
|
||||||
extend-exclude = '''
|
extend-exclude = '''
|
||||||
/(
|
/(
|
||||||
|
|||||||
@@ -240,6 +240,7 @@ Examples:
|
|||||||
# Prompt audio (for voice cloning)
|
# Prompt audio (for voice cloning)
|
||||||
parser.add_argument("--prompt-audio", "-pa", help="Reference audio file path")
|
parser.add_argument("--prompt-audio", "-pa", help="Reference audio file path")
|
||||||
parser.add_argument("--prompt-text", "-pt", help="Reference text corresponding to the audio")
|
parser.add_argument("--prompt-text", "-pt", help="Reference text corresponding to the audio")
|
||||||
|
parser.add_argument("--prompt-file", "-pf", help="Reference text file corresponding to the audio")
|
||||||
parser.add_argument("--denoise", action="store_true", help="Enable prompt speech enhancement (denoising)")
|
parser.add_argument("--denoise", action="store_true", help="Enable prompt speech enhancement (denoising)")
|
||||||
|
|
||||||
# Generation parameters
|
# Generation parameters
|
||||||
@@ -279,6 +280,12 @@ def main():
|
|||||||
|
|
||||||
# If prompt audio+text provided → voice cloning
|
# If prompt audio+text provided → voice cloning
|
||||||
if args.prompt_audio or args.prompt_text:
|
if args.prompt_audio or args.prompt_text:
|
||||||
|
if not args.prompt_text and args.prompt_file:
|
||||||
|
assert os.path.isfile(args.prompt_file), "Prompt file does not exist or is not accessible."
|
||||||
|
|
||||||
|
with open(args.prompt_file, 'r', encoding='utf-8') as f:
|
||||||
|
args.prompt_text = f.read()
|
||||||
|
|
||||||
if not args.prompt_audio or not args.prompt_text:
|
if not args.prompt_audio or not args.prompt_text:
|
||||||
print("Error: Voice cloning requires both --prompt-audio and --prompt-text")
|
print("Error: Voice cloning requires both --prompt-audio and --prompt-text")
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|||||||
@@ -1,7 +1,8 @@
|
|||||||
import torch
|
|
||||||
import torchaudio
|
|
||||||
import os
|
import os
|
||||||
|
import re
|
||||||
import tempfile
|
import tempfile
|
||||||
|
import numpy as np
|
||||||
|
from typing import Generator
|
||||||
from huggingface_hub import snapshot_download
|
from huggingface_hub import snapshot_download
|
||||||
from .model.voxcpm import VoxCPMModel
|
from .model.voxcpm import VoxCPMModel
|
||||||
|
|
||||||
@@ -10,6 +11,7 @@ class VoxCPM:
|
|||||||
voxcpm_model_path : str,
|
voxcpm_model_path : str,
|
||||||
zipenhancer_model_path : str = "iic/speech_zipenhancer_ans_multiloss_16k_base",
|
zipenhancer_model_path : str = "iic/speech_zipenhancer_ans_multiloss_16k_base",
|
||||||
enable_denoiser : bool = True,
|
enable_denoiser : bool = True,
|
||||||
|
optimize: bool = True,
|
||||||
):
|
):
|
||||||
"""Initialize VoxCPM TTS pipeline.
|
"""Initialize VoxCPM TTS pipeline.
|
||||||
|
|
||||||
@@ -20,9 +22,10 @@ class VoxCPM:
|
|||||||
zipenhancer_model_path: ModelScope acoustic noise suppression model
|
zipenhancer_model_path: ModelScope acoustic noise suppression model
|
||||||
id or local path. If None, denoiser will not be initialized.
|
id or local path. If None, denoiser will not be initialized.
|
||||||
enable_denoiser: Whether to initialize the denoiser pipeline.
|
enable_denoiser: Whether to initialize the denoiser pipeline.
|
||||||
|
optimize: Whether to optimize the model with torch.compile. True by default, but can be disabled for debugging.
|
||||||
"""
|
"""
|
||||||
print(f"voxcpm_model_path: {voxcpm_model_path}, zipenhancer_model_path: {zipenhancer_model_path}, enable_denoiser: {enable_denoiser}")
|
print(f"voxcpm_model_path: {voxcpm_model_path}, zipenhancer_model_path: {zipenhancer_model_path}, enable_denoiser: {enable_denoiser}")
|
||||||
self.tts_model = VoxCPMModel.from_local(voxcpm_model_path)
|
self.tts_model = VoxCPMModel.from_local(voxcpm_model_path, optimize=optimize)
|
||||||
self.text_normalizer = None
|
self.text_normalizer = None
|
||||||
if enable_denoiser and zipenhancer_model_path is not None:
|
if enable_denoiser and zipenhancer_model_path is not None:
|
||||||
from .zipenhancer import ZipEnhancer
|
from .zipenhancer import ZipEnhancer
|
||||||
@@ -42,6 +45,7 @@ class VoxCPM:
|
|||||||
zipenhancer_model_id: str = "iic/speech_zipenhancer_ans_multiloss_16k_base",
|
zipenhancer_model_id: str = "iic/speech_zipenhancer_ans_multiloss_16k_base",
|
||||||
cache_dir: str = None,
|
cache_dir: str = None,
|
||||||
local_files_only: bool = False,
|
local_files_only: bool = False,
|
||||||
|
**kwargs,
|
||||||
):
|
):
|
||||||
"""Instantiate ``VoxCPM`` from a Hugging Face Hub snapshot.
|
"""Instantiate ``VoxCPM`` from a Hugging Face Hub snapshot.
|
||||||
|
|
||||||
@@ -53,6 +57,8 @@ class VoxCPM:
|
|||||||
cache_dir: Custom cache directory for the snapshot.
|
cache_dir: Custom cache directory for the snapshot.
|
||||||
local_files_only: If True, only use local files and do not attempt
|
local_files_only: If True, only use local files and do not attempt
|
||||||
to download.
|
to download.
|
||||||
|
Kwargs:
|
||||||
|
Additional keyword arguments passed to the ``VoxCPM`` constructor.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
VoxCPM: Initialized instance whose ``voxcpm_model_path`` points to
|
VoxCPM: Initialized instance whose ``voxcpm_model_path`` points to
|
||||||
@@ -81,9 +87,16 @@ class VoxCPM:
|
|||||||
voxcpm_model_path=local_path,
|
voxcpm_model_path=local_path,
|
||||||
zipenhancer_model_path=zipenhancer_model_id if load_denoiser else None,
|
zipenhancer_model_path=zipenhancer_model_id if load_denoiser else None,
|
||||||
enable_denoiser=load_denoiser,
|
enable_denoiser=load_denoiser,
|
||||||
|
**kwargs,
|
||||||
)
|
)
|
||||||
|
|
||||||
def generate(self,
|
def generate(self, *args, **kwargs) -> np.ndarray:
|
||||||
|
return next(self._generate(*args, streaming=False, **kwargs))
|
||||||
|
|
||||||
|
def generate_streaming(self, *args, **kwargs) -> Generator[np.ndarray, None, None]:
|
||||||
|
return self._generate(*args, streaming=True, **kwargs)
|
||||||
|
|
||||||
|
def _generate(self,
|
||||||
text : str,
|
text : str,
|
||||||
prompt_wav_path : str = None,
|
prompt_wav_path : str = None,
|
||||||
prompt_text : str = None,
|
prompt_text : str = None,
|
||||||
@@ -95,7 +108,8 @@ class VoxCPM:
|
|||||||
retry_badcase : bool = True,
|
retry_badcase : bool = True,
|
||||||
retry_badcase_max_times : int = 3,
|
retry_badcase_max_times : int = 3,
|
||||||
retry_badcase_ratio_threshold : float = 6.0,
|
retry_badcase_ratio_threshold : float = 6.0,
|
||||||
):
|
streaming: bool = False,
|
||||||
|
) -> Generator[np.ndarray, None, None]:
|
||||||
"""Synthesize speech for the given text and return a single waveform.
|
"""Synthesize speech for the given text and return a single waveform.
|
||||||
|
|
||||||
This method optionally builds and reuses a prompt cache. If an external
|
This method optionally builds and reuses a prompt cache. If an external
|
||||||
@@ -117,13 +131,25 @@ class VoxCPM:
|
|||||||
retry_badcase: Whether to retry badcase.
|
retry_badcase: Whether to retry badcase.
|
||||||
retry_badcase_max_times: Maximum number of times to retry badcase.
|
retry_badcase_max_times: Maximum number of times to retry badcase.
|
||||||
retry_badcase_ratio_threshold: Threshold for audio-to-text ratio.
|
retry_badcase_ratio_threshold: Threshold for audio-to-text ratio.
|
||||||
|
streaming: Whether to return a generator of audio chunks.
|
||||||
Returns:
|
Returns:
|
||||||
numpy.ndarray: 1D waveform array (float32) on CPU.
|
Generator of numpy.ndarray: 1D waveform array (float32) on CPU.
|
||||||
|
Yields audio chunks for each generations step if ``streaming=True``,
|
||||||
|
otherwise yields a single array containing the final audio.
|
||||||
"""
|
"""
|
||||||
texts = text.split("\n")
|
if not text.strip() or not isinstance(text, str):
|
||||||
texts = [t.strip() for t in texts if t.strip()]
|
raise ValueError("target text must be a non-empty string")
|
||||||
final_wav = []
|
|
||||||
temp_prompt_wav_path = None
|
if prompt_wav_path is not None:
|
||||||
|
if not os.path.exists(prompt_wav_path):
|
||||||
|
raise FileNotFoundError(f"prompt_wav_path does not exist: {prompt_wav_path}")
|
||||||
|
|
||||||
|
if (prompt_wav_path is None) != (prompt_text is None):
|
||||||
|
raise ValueError("prompt_wav_path and prompt_text must both be provided or both be None")
|
||||||
|
|
||||||
|
text = text.replace("\n", " ")
|
||||||
|
text = re.sub(r'\s+', ' ', text)
|
||||||
|
temp_prompt_wav_path = None
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if prompt_wav_path is not None and prompt_text is not None:
|
if prompt_wav_path is not None and prompt_text is not None:
|
||||||
@@ -139,35 +165,27 @@ class VoxCPM:
|
|||||||
else:
|
else:
|
||||||
fixed_prompt_cache = None # will be built from the first inference
|
fixed_prompt_cache = None # will be built from the first inference
|
||||||
|
|
||||||
for sub_text in texts:
|
if normalize:
|
||||||
if sub_text.strip() == "":
|
if self.text_normalizer is None:
|
||||||
continue
|
from .utils.text_normalize import TextNormalizer
|
||||||
print("sub_text:", sub_text)
|
self.text_normalizer = TextNormalizer()
|
||||||
if normalize:
|
text = self.text_normalizer.normalize(text)
|
||||||
if self.text_normalizer is None:
|
|
||||||
from .utils.text_normalize import TextNormalizer
|
generate_result = self.tts_model._generate_with_prompt_cache(
|
||||||
self.text_normalizer = TextNormalizer()
|
target_text=text,
|
||||||
sub_text = self.text_normalizer.normalize(sub_text)
|
prompt_cache=fixed_prompt_cache,
|
||||||
wav, target_text_token, generated_audio_feat = self.tts_model.generate_with_prompt_cache(
|
min_len=2,
|
||||||
target_text=sub_text,
|
max_len=max_length,
|
||||||
prompt_cache=fixed_prompt_cache,
|
inference_timesteps=inference_timesteps,
|
||||||
min_len=2,
|
cfg_value=cfg_value,
|
||||||
max_len=max_length,
|
retry_badcase=retry_badcase,
|
||||||
inference_timesteps=inference_timesteps,
|
retry_badcase_max_times=retry_badcase_max_times,
|
||||||
cfg_value=cfg_value,
|
retry_badcase_ratio_threshold=retry_badcase_ratio_threshold,
|
||||||
retry_badcase=retry_badcase,
|
streaming=streaming,
|
||||||
retry_badcase_max_times=retry_badcase_max_times,
|
)
|
||||||
retry_badcase_ratio_threshold=retry_badcase_ratio_threshold,
|
|
||||||
)
|
|
||||||
if fixed_prompt_cache is None:
|
|
||||||
fixed_prompt_cache = self.tts_model.merge_prompt_cache(
|
|
||||||
original_cache=None,
|
|
||||||
new_text_token=target_text_token,
|
|
||||||
new_audio_feat=generated_audio_feat
|
|
||||||
)
|
|
||||||
final_wav.append(wav)
|
|
||||||
|
|
||||||
return torch.cat(final_wav, dim=1).squeeze(0).cpu().numpy()
|
for wav, _, _ in generate_result:
|
||||||
|
yield wav.squeeze(0).cpu().numpy()
|
||||||
|
|
||||||
finally:
|
finally:
|
||||||
if temp_prompt_wav_path and os.path.exists(temp_prompt_wav_path):
|
if temp_prompt_wav_path and os.path.exists(temp_prompt_wav_path):
|
||||||
|
|||||||
@@ -19,11 +19,12 @@ limitations under the License.
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import os
|
import os
|
||||||
from typing import Dict, Optional, Tuple, Union
|
from typing import Tuple, Union, Generator, List
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torchaudio
|
import torchaudio
|
||||||
|
import warnings
|
||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
@@ -84,11 +85,15 @@ class VoxCPMModel(nn.Module):
|
|||||||
self.patch_size = config.patch_size
|
self.patch_size = config.patch_size
|
||||||
self.device = config.device
|
self.device = config.device
|
||||||
if not torch.cuda.is_available():
|
if not torch.cuda.is_available():
|
||||||
self.device = "cpu"
|
if torch.backends.mps.is_available():
|
||||||
|
self.device = "mps"
|
||||||
|
else:
|
||||||
|
self.device = "cpu"
|
||||||
|
print(f"Running on device: {self.device}, dtype: {self.config.dtype}")
|
||||||
|
|
||||||
# Text-Semantic LM
|
# Text-Semantic LM
|
||||||
self.base_lm = MiniCPMModel(config.lm_config)
|
self.base_lm = MiniCPMModel(config.lm_config)
|
||||||
self.base_lm.setup_cache(1, config.max_length, self.device, get_dtype(config.dtype))
|
self.base_lm.setup_cache(1, config.max_length, self.device, get_dtype(self.config.dtype))
|
||||||
|
|
||||||
self.text_tokenizer = mask_multichar_chinese_tokens(tokenizer)
|
self.text_tokenizer = mask_multichar_chinese_tokens(tokenizer)
|
||||||
self.audio_start_token = 101
|
self.audio_start_token = 101
|
||||||
@@ -99,7 +104,7 @@ class VoxCPMModel(nn.Module):
|
|||||||
residual_lm_config.num_hidden_layers = config.residual_lm_num_layers
|
residual_lm_config.num_hidden_layers = config.residual_lm_num_layers
|
||||||
residual_lm_config.vocab_size = 0
|
residual_lm_config.vocab_size = 0
|
||||||
self.residual_lm = MiniCPMModel(residual_lm_config)
|
self.residual_lm = MiniCPMModel(residual_lm_config)
|
||||||
self.residual_lm.setup_cache(1, config.max_length, self.device, get_dtype(config.dtype))
|
self.residual_lm.setup_cache(1, config.max_length, self.device, get_dtype(self.config.dtype))
|
||||||
|
|
||||||
# Local Encoder
|
# Local Encoder
|
||||||
encoder_config = config.lm_config.model_copy(deep=True)
|
encoder_config = config.lm_config.model_copy(deep=True)
|
||||||
@@ -131,7 +136,7 @@ class VoxCPMModel(nn.Module):
|
|||||||
config.lm_config.hidden_size,
|
config.lm_config.hidden_size,
|
||||||
config.scalar_quantization_latent_dim,
|
config.scalar_quantization_latent_dim,
|
||||||
config.scalar_quantization_scale
|
config.scalar_quantization_scale
|
||||||
)
|
)
|
||||||
self.enc_to_lm_proj = nn.Linear(config.encoder_config.hidden_dim, config.lm_config.hidden_size)
|
self.enc_to_lm_proj = nn.Linear(config.encoder_config.hidden_dim, config.lm_config.hidden_size)
|
||||||
self.lm_to_dit_proj = nn.Linear(config.lm_config.hidden_size, config.dit_config.hidden_dim)
|
self.lm_to_dit_proj = nn.Linear(config.lm_config.hidden_size, config.dit_config.hidden_dim)
|
||||||
self.res_to_dit_proj = nn.Linear(config.lm_config.hidden_size, config.dit_config.hidden_dim)
|
self.res_to_dit_proj = nn.Linear(config.lm_config.hidden_size, config.dit_config.hidden_dim)
|
||||||
@@ -147,16 +152,23 @@ class VoxCPMModel(nn.Module):
|
|||||||
self.sample_rate = audio_vae.sample_rate
|
self.sample_rate = audio_vae.sample_rate
|
||||||
|
|
||||||
|
|
||||||
def optimize(self):
|
def optimize(self, disable: bool = False):
|
||||||
try:
|
try:
|
||||||
|
if disable:
|
||||||
|
raise ValueError("Optimization disabled by user")
|
||||||
if self.device != "cuda":
|
if self.device != "cuda":
|
||||||
raise ValueError("VoxCPMModel can only be optimized on CUDA device")
|
raise ValueError("VoxCPMModel can only be optimized on CUDA device")
|
||||||
|
try:
|
||||||
|
import triton
|
||||||
|
except:
|
||||||
|
raise ValueError("triton is not installed")
|
||||||
self.base_lm.forward_step = torch.compile(self.base_lm.forward_step, mode="reduce-overhead", fullgraph=True)
|
self.base_lm.forward_step = torch.compile(self.base_lm.forward_step, mode="reduce-overhead", fullgraph=True)
|
||||||
self.residual_lm.forward_step = torch.compile(self.residual_lm.forward_step, mode="reduce-overhead", fullgraph=True)
|
self.residual_lm.forward_step = torch.compile(self.residual_lm.forward_step, mode="reduce-overhead", fullgraph=True)
|
||||||
self.feat_encoder_step = torch.compile(self.feat_encoder, mode="reduce-overhead", fullgraph=True)
|
self.feat_encoder_step = torch.compile(self.feat_encoder, mode="reduce-overhead", fullgraph=True)
|
||||||
self.feat_decoder.estimator = torch.compile(self.feat_decoder.estimator, mode="reduce-overhead", fullgraph=True)
|
self.feat_decoder.estimator = torch.compile(self.feat_decoder.estimator, mode="reduce-overhead", fullgraph=True)
|
||||||
except:
|
except Exception as e:
|
||||||
print("VoxCPMModel can not be optimized by torch.compile, using original forward_step functions")
|
print(f"Error: {e}")
|
||||||
|
print("Warning: VoxCPMModel can not be optimized by torch.compile, using original forward_step functions")
|
||||||
self.base_lm.forward_step = self.base_lm.forward_step
|
self.base_lm.forward_step = self.base_lm.forward_step
|
||||||
self.residual_lm.forward_step = self.residual_lm.forward_step
|
self.residual_lm.forward_step = self.residual_lm.forward_step
|
||||||
self.feat_encoder_step = self.feat_encoder
|
self.feat_encoder_step = self.feat_encoder
|
||||||
@@ -164,8 +176,14 @@ class VoxCPMModel(nn.Module):
|
|||||||
return self
|
return self
|
||||||
|
|
||||||
|
|
||||||
|
def generate(self, *args, **kwargs) -> torch.Tensor:
|
||||||
|
return next(self._generate(*args, streaming=False, **kwargs))
|
||||||
|
|
||||||
|
def generate_streaming(self, *args, **kwargs) -> Generator[torch.Tensor, None, None]:
|
||||||
|
return self._generate(*args, streaming=True, **kwargs)
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def generate(
|
def _generate(
|
||||||
self,
|
self,
|
||||||
target_text: str,
|
target_text: str,
|
||||||
prompt_text: str = "",
|
prompt_text: str = "",
|
||||||
@@ -177,7 +195,11 @@ class VoxCPMModel(nn.Module):
|
|||||||
retry_badcase: bool = False,
|
retry_badcase: bool = False,
|
||||||
retry_badcase_max_times: int = 3,
|
retry_badcase_max_times: int = 3,
|
||||||
retry_badcase_ratio_threshold: float = 6.0, # setting acceptable ratio of audio length to text length (for badcase detection)
|
retry_badcase_ratio_threshold: float = 6.0, # setting acceptable ratio of audio length to text length (for badcase detection)
|
||||||
):
|
streaming: bool = False,
|
||||||
|
) -> Generator[torch.Tensor, None, None]:
|
||||||
|
if retry_badcase and streaming:
|
||||||
|
warnings.warn("Retry on bad cases is not supported in streaming mode, setting retry_badcase=False.")
|
||||||
|
retry_badcase = False
|
||||||
if len(prompt_wav_path) == 0:
|
if len(prompt_wav_path) == 0:
|
||||||
text = target_text
|
text = target_text
|
||||||
text_token = torch.LongTensor(self.text_tokenizer(text))
|
text_token = torch.LongTensor(self.text_tokenizer(text))
|
||||||
@@ -253,14 +275,14 @@ class VoxCPMModel(nn.Module):
|
|||||||
|
|
||||||
text_token = text_token.unsqueeze(0).to(self.device)
|
text_token = text_token.unsqueeze(0).to(self.device)
|
||||||
text_mask = text_mask.unsqueeze(0).to(self.device)
|
text_mask = text_mask.unsqueeze(0).to(self.device)
|
||||||
audio_feat = audio_feat.unsqueeze(0).to(self.device).to(torch.bfloat16)
|
audio_feat = audio_feat.unsqueeze(0).to(self.device).to(get_dtype(self.config.dtype))
|
||||||
audio_mask = audio_mask.unsqueeze(0).to(self.device)
|
audio_mask = audio_mask.unsqueeze(0).to(self.device)
|
||||||
|
|
||||||
target_text_length = len(self.text_tokenizer(target_text))
|
target_text_length = len(self.text_tokenizer(target_text))
|
||||||
|
|
||||||
retry_badcase_times = 0
|
retry_badcase_times = 0
|
||||||
while retry_badcase_times < retry_badcase_max_times:
|
while retry_badcase_times < retry_badcase_max_times:
|
||||||
latent_pred, pred_audio_feat = self.inference(
|
inference_result = self._inference(
|
||||||
text_token,
|
text_token,
|
||||||
text_mask,
|
text_mask,
|
||||||
audio_feat,
|
audio_feat,
|
||||||
@@ -269,17 +291,31 @@ class VoxCPMModel(nn.Module):
|
|||||||
max_len=int(target_text_length * retry_badcase_ratio_threshold + 10) if retry_badcase else max_len,
|
max_len=int(target_text_length * retry_badcase_ratio_threshold + 10) if retry_badcase else max_len,
|
||||||
inference_timesteps=inference_timesteps,
|
inference_timesteps=inference_timesteps,
|
||||||
cfg_value=cfg_value,
|
cfg_value=cfg_value,
|
||||||
|
streaming=streaming,
|
||||||
)
|
)
|
||||||
if retry_badcase:
|
if streaming:
|
||||||
if pred_audio_feat.shape[0] >= target_text_length * retry_badcase_ratio_threshold:
|
patch_len = self.patch_size * self.chunk_size
|
||||||
print(f" Badcase detected, audio_text_ratio={pred_audio_feat.shape[0] / target_text_length}, retrying...")
|
for latent_pred, _ in inference_result:
|
||||||
retry_badcase_times += 1
|
decode_audio = self.audio_vae.decode(latent_pred.to(torch.float32))
|
||||||
continue
|
decode_audio = decode_audio[..., -patch_len:].squeeze(1).cpu()
|
||||||
else:
|
yield decode_audio
|
||||||
break
|
|
||||||
else:
|
|
||||||
break
|
break
|
||||||
return self.audio_vae.decode(latent_pred.to(torch.float32)).squeeze(1).cpu()
|
else:
|
||||||
|
latent_pred, pred_audio_feat = next(inference_result)
|
||||||
|
if retry_badcase:
|
||||||
|
if pred_audio_feat.shape[0] >= target_text_length * retry_badcase_ratio_threshold:
|
||||||
|
print(f" Badcase detected, audio_text_ratio={pred_audio_feat.shape[0] / target_text_length}, retrying...")
|
||||||
|
retry_badcase_times += 1
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
|
||||||
|
if not streaming:
|
||||||
|
decode_audio = self.audio_vae.decode(latent_pred.to(torch.float32)).squeeze(1).cpu()
|
||||||
|
decode_audio = decode_audio[..., 640:-640] # trick: trim the start and end of the audio
|
||||||
|
yield decode_audio
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def build_prompt_cache(
|
def build_prompt_cache(
|
||||||
@@ -317,7 +353,7 @@ class VoxCPMModel(nn.Module):
|
|||||||
audio = torch.nn.functional.pad(audio, (0, patch_len - audio.size(1) % patch_len))
|
audio = torch.nn.functional.pad(audio, (0, patch_len - audio.size(1) % patch_len))
|
||||||
|
|
||||||
# extract audio features
|
# extract audio features
|
||||||
audio_feat = self.audio_vae.encode(audio.cuda(), self.sample_rate).cpu()
|
audio_feat = self.audio_vae.encode(audio.to(self.device), self.sample_rate).cpu()
|
||||||
|
|
||||||
audio_feat = audio_feat.view(
|
audio_feat = audio_feat.view(
|
||||||
self.audio_vae.latent_dim,
|
self.audio_vae.latent_dim,
|
||||||
@@ -368,9 +404,17 @@ class VoxCPMModel(nn.Module):
|
|||||||
}
|
}
|
||||||
|
|
||||||
return merged_cache
|
return merged_cache
|
||||||
|
|
||||||
|
def generate_with_prompt_cache(self, *args, **kwargs) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||||
|
return next(self._generate_with_prompt_cache(*args, streaming=False, **kwargs))
|
||||||
|
|
||||||
|
def generate_with_prompt_cache_streaming(
|
||||||
|
self, *args, **kwargs
|
||||||
|
) -> Generator[Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]], None, None]:
|
||||||
|
return self._generate_with_prompt_cache(*args, streaming=True, **kwargs)
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def generate_with_prompt_cache(
|
def _generate_with_prompt_cache(
|
||||||
self,
|
self,
|
||||||
target_text: str,
|
target_text: str,
|
||||||
prompt_cache: dict,
|
prompt_cache: dict,
|
||||||
@@ -381,7 +425,8 @@ class VoxCPMModel(nn.Module):
|
|||||||
retry_badcase: bool = False,
|
retry_badcase: bool = False,
|
||||||
retry_badcase_max_times: int = 3,
|
retry_badcase_max_times: int = 3,
|
||||||
retry_badcase_ratio_threshold: float = 6.0,
|
retry_badcase_ratio_threshold: float = 6.0,
|
||||||
):
|
streaming: bool = False,
|
||||||
|
) -> Generator[Tuple[torch.Tensor, torch.Tensor, Union[torch.Tensor, List[torch.Tensor]]], None, None]:
|
||||||
"""
|
"""
|
||||||
Generate audio using pre-built prompt cache.
|
Generate audio using pre-built prompt cache.
|
||||||
|
|
||||||
@@ -395,10 +440,17 @@ class VoxCPMModel(nn.Module):
|
|||||||
retry_badcase: Whether to retry on bad cases
|
retry_badcase: Whether to retry on bad cases
|
||||||
retry_badcase_max_times: Maximum retry attempts
|
retry_badcase_max_times: Maximum retry attempts
|
||||||
retry_badcase_ratio_threshold: Threshold for audio-to-text ratio
|
retry_badcase_ratio_threshold: Threshold for audio-to-text ratio
|
||||||
|
streaming: Whether to return a generator of audio chunks
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tuple: (decoded audio tensor, new text tokens, new audio features)
|
Generator of Tuple containing:
|
||||||
|
- Decoded audio tensor for the current step if ``streaming=True``, else final decoded audio tensor
|
||||||
|
- Tensor of new text tokens
|
||||||
|
- New audio features up to the current step as a List if ``streaming=True``, else as a concatenated Tensor
|
||||||
"""
|
"""
|
||||||
|
if retry_badcase and streaming:
|
||||||
|
warnings.warn("Retry on bad cases is not supported in streaming mode, setting retry_badcase=False.")
|
||||||
|
retry_badcase = False
|
||||||
# get prompt from cache
|
# get prompt from cache
|
||||||
if prompt_cache is None:
|
if prompt_cache is None:
|
||||||
prompt_text_token = torch.empty(0, dtype=torch.int32)
|
prompt_text_token = torch.empty(0, dtype=torch.int32)
|
||||||
@@ -436,14 +488,14 @@ class VoxCPMModel(nn.Module):
|
|||||||
|
|
||||||
text_token = text_token.unsqueeze(0).to(self.device)
|
text_token = text_token.unsqueeze(0).to(self.device)
|
||||||
text_mask = text_mask.unsqueeze(0).to(self.device)
|
text_mask = text_mask.unsqueeze(0).to(self.device)
|
||||||
audio_feat = audio_feat.unsqueeze(0).to(self.device).to(torch.bfloat16)
|
audio_feat = audio_feat.unsqueeze(0).to(self.device).to(get_dtype(self.config.dtype))
|
||||||
audio_mask = audio_mask.unsqueeze(0).to(self.device)
|
audio_mask = audio_mask.unsqueeze(0).to(self.device)
|
||||||
|
|
||||||
# run inference
|
# run inference
|
||||||
target_text_length = len(self.text_tokenizer(target_text))
|
target_text_length = len(self.text_tokenizer(target_text))
|
||||||
retry_badcase_times = 0
|
retry_badcase_times = 0
|
||||||
while retry_badcase_times < retry_badcase_max_times:
|
while retry_badcase_times < retry_badcase_max_times:
|
||||||
latent_pred, pred_audio_feat = self.inference(
|
inference_result = self._inference(
|
||||||
text_token,
|
text_token,
|
||||||
text_mask,
|
text_mask,
|
||||||
audio_feat,
|
audio_feat,
|
||||||
@@ -452,26 +504,48 @@ class VoxCPMModel(nn.Module):
|
|||||||
max_len=int(target_text_length * retry_badcase_ratio_threshold + 10) if retry_badcase else max_len,
|
max_len=int(target_text_length * retry_badcase_ratio_threshold + 10) if retry_badcase else max_len,
|
||||||
inference_timesteps=inference_timesteps,
|
inference_timesteps=inference_timesteps,
|
||||||
cfg_value=cfg_value,
|
cfg_value=cfg_value,
|
||||||
|
streaming=streaming,
|
||||||
)
|
)
|
||||||
if retry_badcase:
|
if streaming:
|
||||||
if pred_audio_feat.shape[0] >= target_text_length * retry_badcase_ratio_threshold:
|
patch_len = self.patch_size * self.chunk_size
|
||||||
print(f" Badcase detected, audio_text_ratio={pred_audio_feat.shape[0] / target_text_length}, retrying...")
|
for latent_pred, pred_audio_feat in inference_result:
|
||||||
retry_badcase_times += 1
|
decode_audio = self.audio_vae.decode(latent_pred.to(torch.float32))
|
||||||
continue
|
decode_audio = decode_audio[..., -patch_len:].squeeze(1).cpu()
|
||||||
|
yield (
|
||||||
|
decode_audio,
|
||||||
|
target_text_token,
|
||||||
|
pred_audio_feat
|
||||||
|
)
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
latent_pred, pred_audio_feat = next(inference_result)
|
||||||
|
if retry_badcase:
|
||||||
|
if pred_audio_feat.shape[0] >= target_text_length * retry_badcase_ratio_threshold:
|
||||||
|
print(f" Badcase detected, audio_text_ratio={pred_audio_feat.shape[0] / target_text_length}, retrying...")
|
||||||
|
retry_badcase_times += 1
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
break
|
||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
else:
|
if not streaming:
|
||||||
break
|
decode_audio = self.audio_vae.decode(latent_pred.to(torch.float32)).squeeze(1).cpu()
|
||||||
decode_audio = self.audio_vae.decode(latent_pred.to(torch.float32)).squeeze(1).cpu()
|
decode_audio = decode_audio[..., 640:-640] # trick: trim the start and end of the audio
|
||||||
|
|
||||||
return (
|
yield (
|
||||||
decode_audio,
|
decode_audio,
|
||||||
target_text_token,
|
target_text_token,
|
||||||
pred_audio_feat
|
pred_audio_feat
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def inference(self, *args, **kwargs) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
return next(self._inference(*args, streaming=False, **kwargs))
|
||||||
|
|
||||||
|
def inference_streaming(self, *args, **kwargs) -> Generator[Tuple[torch.Tensor, List[torch.Tensor]], None, None]:
|
||||||
|
return self._inference(*args, streaming=True, **kwargs)
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def inference(
|
def _inference(
|
||||||
self,
|
self,
|
||||||
text: torch.Tensor,
|
text: torch.Tensor,
|
||||||
text_mask: torch.Tensor,
|
text_mask: torch.Tensor,
|
||||||
@@ -481,7 +555,8 @@ class VoxCPMModel(nn.Module):
|
|||||||
max_len: int = 2000,
|
max_len: int = 2000,
|
||||||
inference_timesteps: int = 10,
|
inference_timesteps: int = 10,
|
||||||
cfg_value: float = 2.0,
|
cfg_value: float = 2.0,
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
streaming: bool = False,
|
||||||
|
) -> Generator[Tuple[torch.Tensor, Union[torch.Tensor, List[torch.Tensor]]], None, None]:
|
||||||
"""Core inference method for audio generation.
|
"""Core inference method for audio generation.
|
||||||
|
|
||||||
This is the main inference loop that generates audio features
|
This is the main inference loop that generates audio features
|
||||||
@@ -496,11 +571,12 @@ class VoxCPMModel(nn.Module):
|
|||||||
max_len: Maximum generation length
|
max_len: Maximum generation length
|
||||||
inference_timesteps: Number of diffusion steps
|
inference_timesteps: Number of diffusion steps
|
||||||
cfg_value: Classifier-free guidance value
|
cfg_value: Classifier-free guidance value
|
||||||
|
streaming: Whether to yield each step latent feature or just the final result
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Tuple containing:
|
Generator of Tuple containing:
|
||||||
- Predicted latent features
|
- Predicted latent feature at the current step if ``streaming=True``, else final latent features
|
||||||
- Predicted audio feature sequence
|
- Predicted audio feature sequence so far as a List if ``streaming=True``, else as a concatenated Tensor
|
||||||
"""
|
"""
|
||||||
B, T, P, D = feat.shape
|
B, T, P, D = feat.shape
|
||||||
|
|
||||||
@@ -557,6 +633,12 @@ class VoxCPMModel(nn.Module):
|
|||||||
|
|
||||||
pred_feat_seq.append(pred_feat.unsqueeze(1)) # b, 1, p, d
|
pred_feat_seq.append(pred_feat.unsqueeze(1)) # b, 1, p, d
|
||||||
prefix_feat_cond = pred_feat
|
prefix_feat_cond = pred_feat
|
||||||
|
|
||||||
|
if streaming:
|
||||||
|
# return the last three predicted latent features to provide enough context for smooth decoding
|
||||||
|
pred_feat_chunk = torch.cat(pred_feat_seq[-3:], dim=1)
|
||||||
|
feat_pred = rearrange(pred_feat_chunk, "b t p d -> b d (t p)", b=B, p=self.patch_size)
|
||||||
|
yield feat_pred, pred_feat_seq
|
||||||
|
|
||||||
stop_flag = self.stop_head(self.stop_actn(self.stop_proj(lm_hidden))).argmax(dim=-1)[0].cpu().item()
|
stop_flag = self.stop_head(self.stop_actn(self.stop_proj(lm_hidden))).argmax(dim=-1)[0].cpu().item()
|
||||||
if i > min_len and stop_flag == 1:
|
if i > min_len and stop_flag == 1:
|
||||||
@@ -572,14 +654,14 @@ class VoxCPMModel(nn.Module):
|
|||||||
lm_hidden + curr_embed[:, 0, :], torch.tensor([self.residual_lm.kv_cache.step()], device=curr_embed.device)
|
lm_hidden + curr_embed[:, 0, :], torch.tensor([self.residual_lm.kv_cache.step()], device=curr_embed.device)
|
||||||
).clone()
|
).clone()
|
||||||
|
|
||||||
pred_feat_seq = torch.cat(pred_feat_seq, dim=1) # b, t, p, d
|
if not streaming:
|
||||||
|
pred_feat_seq = torch.cat(pred_feat_seq, dim=1) # b, t, p, d
|
||||||
|
|
||||||
feat_pred = rearrange(pred_feat_seq, "b t p d -> b d (t p)", b=B, p=self.patch_size)
|
feat_pred = rearrange(pred_feat_seq, "b t p d -> b d (t p)", b=B, p=self.patch_size)
|
||||||
feat_pred = feat_pred[..., 1:-1] # trick: remove the first and last token
|
yield feat_pred, pred_feat_seq.squeeze(0).cpu()
|
||||||
return feat_pred, pred_feat_seq.squeeze(0).cpu()
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def from_local(cls, path: str):
|
def from_local(cls, path: str, optimize: bool = True):
|
||||||
config = VoxCPMConfig.model_validate_json(open(os.path.join(path, "config.json")).read())
|
config = VoxCPMConfig.model_validate_json(open(os.path.join(path, "config.json")).read())
|
||||||
|
|
||||||
tokenizer = LlamaTokenizerFast.from_pretrained(path)
|
tokenizer = LlamaTokenizerFast.from_pretrained(path)
|
||||||
@@ -592,7 +674,7 @@ class VoxCPMModel(nn.Module):
|
|||||||
)["state_dict"]
|
)["state_dict"]
|
||||||
|
|
||||||
model = cls(config, tokenizer, audio_vae)
|
model = cls(config, tokenizer, audio_vae)
|
||||||
lm_dtype = get_dtype(config.dtype)
|
lm_dtype = get_dtype(model.config.dtype)
|
||||||
model = model.to(lm_dtype)
|
model = model.to(lm_dtype)
|
||||||
model.audio_vae = model.audio_vae.to(torch.float32)
|
model.audio_vae = model.audio_vae.to(torch.float32)
|
||||||
|
|
||||||
@@ -605,4 +687,4 @@ class VoxCPMModel(nn.Module):
|
|||||||
for kw, val in vae_state_dict.items():
|
for kw, val in vae_state_dict.items():
|
||||||
model_state_dict[f"audio_vae.{kw}"] = val
|
model_state_dict[f"audio_vae.{kw}"] = val
|
||||||
model.load_state_dict(model_state_dict, strict=True)
|
model.load_state_dict(model_state_dict, strict=True)
|
||||||
return model.to(model.device).eval().optimize()
|
return model.to(model.device).eval().optimize(disable=not optimize)
|
||||||
|
|||||||
@@ -153,7 +153,12 @@ class MiniCPMAttention(nn.Module):
|
|||||||
cos, sin = position_emb
|
cos, sin = position_emb
|
||||||
|
|
||||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||||||
|
|
||||||
|
# ref: https://github.com/pytorch/pytorch/issues/163597
|
||||||
|
# there is a bug in MPS for non-contiguous tensors, so we need to make them contiguous
|
||||||
|
query_states = query_states.contiguous()
|
||||||
|
key_states = key_states.contiguous()
|
||||||
|
value_states = value_states.contiguous()
|
||||||
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||||||
query_states,
|
query_states,
|
||||||
key_states,
|
key_states,
|
||||||
@@ -198,6 +203,11 @@ class MiniCPMAttention(nn.Module):
|
|||||||
|
|
||||||
attn_mask = torch.arange(key_cache.size(2), device=key_cache.device) <= position_id
|
attn_mask = torch.arange(key_cache.size(2), device=key_cache.device) <= position_id
|
||||||
|
|
||||||
|
# ref: https://github.com/pytorch/pytorch/issues/163597
|
||||||
|
# there is a bug in MPS for non-contiguous tensors, so we need to make them contiguous
|
||||||
|
query_states = query_states.contiguous()
|
||||||
|
key_cache = key_cache.contiguous()
|
||||||
|
value_cache = value_cache.contiguous()
|
||||||
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||||||
query_states,
|
query_states,
|
||||||
key_cache,
|
key_cache,
|
||||||
|
|||||||
Reference in New Issue
Block a user