8 Commits
1.0.2 ... 1.0.3

Author SHA1 Message Date
刘鑫
dc6b6d1d1c Fx: capture compile error on Windows 2025-09-18 19:23:13 +08:00
刘鑫
cef6aefb3d remove \n from input text 2025-09-18 14:57:45 +08:00
周逸轩
1a46c5d1ad update README 2025-09-18 14:53:37 +08:00
周逸轩
5257ec3dc5 FX: noise point 2025-09-18 14:50:01 +08:00
刘鑫
bdd516b579 remove target text anotation 2025-09-18 13:07:43 +08:00
刘鑫
11568f0776 remove target text anotation 2025-09-18 12:58:27 +08:00
刘鑫
e5bcb735f0 Remove segment text logic 2025-09-18 12:02:37 +08:00
周逸轩
1fa9e2ca02 update README 2025-09-18 01:21:45 +08:00
5 changed files with 52 additions and 47 deletions

View File

@@ -267,6 +267,8 @@ This project is developed by the following institutions:
- <img src="assets/thuhcsi_logo.png" width="28px"> [THUHCSI](https://github.com/thuhcsi)
## ⭐ Star History
[![Star History Chart](https://api.star-history.com/svg?repos=OpenBMB/VoxCPM&type=Date)](https://star-history.com/#OpenBMB/VoxCPM&Date)
## 📚 Citation

9
app.py
View File

@@ -194,10 +194,6 @@ def create_demo_interface(demo: VoxCPMDemo):
**调低**:合成速度更快。
- **Higher** for better synthesis quality.
**调高**:合成质量更佳。
### Long Text (e.g., >5 min speech)|长文本 (如 >5分钟的合成语音)
While VoxCPM can handle long texts directly, we recommend using empty lines to break very long content into paragraphs; the model will then synthesize each paragraph individually.
虽然 VoxCPM 支持直接生成长文本,但如果目标文本过长,我们建议使用换行符将内容分段;模型将对每个段落分别合成。
""")
# Main controls
@@ -206,7 +202,7 @@ def create_demo_interface(demo: VoxCPMDemo):
prompt_wav = gr.Audio(
sources=["upload", 'microphone'],
type="filepath",
label="Prompt Speech",
label="Prompt Speech (Optional, or let VoxCPM improvise)",
value="./examples/example.wav",
)
DoDenoisePromptAudio = gr.Checkbox(
@@ -244,14 +240,13 @@ def create_demo_interface(demo: VoxCPMDemo):
text = gr.Textbox(
value="VoxCPM is an innovative end-to-end TTS model from ModelBest, designed to generate highly realistic speech.",
label="Target Text",
info="Default processing splits text on \\n into paragraphs; each is synthesized as a chunk and then concatenated into the final audio."
)
with gr.Row():
DoNormalizeText = gr.Checkbox(
value=False,
label="Text Normalization",
elem_id="chk_normalize",
info="We use WeTextPorcessing library to normalize the input text."
info="We use wetext library to normalize the input text."
)
audio_output = gr.Audio(label="Output Audio")

View File

@@ -36,7 +36,7 @@ dependencies = [
"addict",
"wetext",
"modelscope>=1.22.0",
"datasets>=2,<4",
"datasets>=3,<4",
"huggingface-hub",
"pydantic",
"tqdm",

View File

@@ -1,6 +1,7 @@
import torch
import torchaudio
import os
import re
import tempfile
from huggingface_hub import snapshot_download
from .model.voxcpm import VoxCPMModel
@@ -120,9 +121,18 @@ class VoxCPM:
Returns:
numpy.ndarray: 1D waveform array (float32) on CPU.
"""
texts = text.split("\n")
texts = [t.strip() for t in texts if t.strip()]
final_wav = []
if not text.strip() or not isinstance(text, str):
raise ValueError("target text must be a non-empty string")
if prompt_wav_path is not None:
if not os.path.exists(prompt_wav_path):
raise FileNotFoundError(f"prompt_wav_path does not exist: {prompt_wav_path}")
if (prompt_wav_path is None) != (prompt_text is None):
raise ValueError("prompt_wav_path and prompt_text must both be provided or both be None")
text = text.replace("\n", " ")
text = re.sub(r'\s+', ' ', text)
temp_prompt_wav_path = None
try:
@@ -139,35 +149,25 @@ class VoxCPM:
else:
fixed_prompt_cache = None # will be built from the first inference
for sub_text in texts:
if sub_text.strip() == "":
continue
print("sub_text:", sub_text)
if normalize:
if self.text_normalizer is None:
from .utils.text_normalize import TextNormalizer
self.text_normalizer = TextNormalizer()
sub_text = self.text_normalizer.normalize(sub_text)
wav, target_text_token, generated_audio_feat = self.tts_model.generate_with_prompt_cache(
target_text=sub_text,
prompt_cache=fixed_prompt_cache,
min_len=2,
max_len=max_length,
inference_timesteps=inference_timesteps,
cfg_value=cfg_value,
retry_badcase=retry_badcase,
retry_badcase_max_times=retry_badcase_max_times,
retry_badcase_ratio_threshold=retry_badcase_ratio_threshold,
)
if fixed_prompt_cache is None:
fixed_prompt_cache = self.tts_model.merge_prompt_cache(
original_cache=None,
new_text_token=target_text_token,
new_audio_feat=generated_audio_feat
)
final_wav.append(wav)
if normalize:
if self.text_normalizer is None:
from .utils.text_normalize import TextNormalizer
self.text_normalizer = TextNormalizer()
text = self.text_normalizer.normalize(text)
return torch.cat(final_wav, dim=1).squeeze(0).cpu().numpy()
wav, target_text_token, generated_audio_feat = self.tts_model.generate_with_prompt_cache(
target_text=text,
prompt_cache=fixed_prompt_cache,
min_len=2,
max_len=max_length,
inference_timesteps=inference_timesteps,
cfg_value=cfg_value,
retry_badcase=retry_badcase,
retry_badcase_max_times=retry_badcase_max_times,
retry_badcase_ratio_threshold=retry_badcase_ratio_threshold,
)
return wav.squeeze(0).cpu().numpy()
finally:
if temp_prompt_wav_path and os.path.exists(temp_prompt_wav_path):

View File

@@ -151,12 +151,17 @@ class VoxCPMModel(nn.Module):
try:
if self.device != "cuda":
raise ValueError("VoxCPMModel can only be optimized on CUDA device")
try:
import triton
except:
raise ValueError("triton is not installed")
self.base_lm.forward_step = torch.compile(self.base_lm.forward_step, mode="reduce-overhead", fullgraph=True)
self.residual_lm.forward_step = torch.compile(self.residual_lm.forward_step, mode="reduce-overhead", fullgraph=True)
self.feat_encoder_step = torch.compile(self.feat_encoder, mode="reduce-overhead", fullgraph=True)
self.feat_decoder.estimator = torch.compile(self.feat_decoder.estimator, mode="reduce-overhead", fullgraph=True)
except:
print("VoxCPMModel can not be optimized by torch.compile, using original forward_step functions")
except Exception as e:
print(f"Error: {e}")
print("Warning: VoxCPMModel can not be optimized by torch.compile, using original forward_step functions")
self.base_lm.forward_step = self.base_lm.forward_step
self.residual_lm.forward_step = self.residual_lm.forward_step
self.feat_encoder_step = self.feat_encoder
@@ -279,7 +284,10 @@ class VoxCPMModel(nn.Module):
break
else:
break
return self.audio_vae.decode(latent_pred.to(torch.float32)).squeeze(1).cpu()
decode_audio = self.audio_vae.decode(latent_pred.to(torch.float32)).squeeze(1).cpu()
decode_audio = decode_audio[..., 640:-640] # trick: trim the start and end of the audio
return decode_audio
@torch.inference_mode()
def build_prompt_cache(
@@ -317,7 +325,7 @@ class VoxCPMModel(nn.Module):
audio = torch.nn.functional.pad(audio, (0, patch_len - audio.size(1) % patch_len))
# extract audio features
audio_feat = self.audio_vae.encode(audio.cuda(), self.sample_rate).cpu()
audio_feat = self.audio_vae.encode(audio.to(self.device), self.sample_rate).cpu()
audio_feat = audio_feat.view(
self.audio_vae.latent_dim,
@@ -463,6 +471,7 @@ class VoxCPMModel(nn.Module):
else:
break
decode_audio = self.audio_vae.decode(latent_pred.to(torch.float32)).squeeze(1).cpu()
decode_audio = decode_audio[..., 640:-640] # trick: trim the start and end of the audio
return (
decode_audio,
@@ -575,7 +584,6 @@ class VoxCPMModel(nn.Module):
pred_feat_seq = torch.cat(pred_feat_seq, dim=1) # b, t, p, d
feat_pred = rearrange(pred_feat_seq, "b t p d -> b d (t p)", b=B, p=self.patch_size)
feat_pred = feat_pred[..., 1:-1] # trick: remove the first and last token
return feat_pred, pred_feat_seq.squeeze(0).cpu()
@classmethod