mirror of
https://github.com/OpenBMB/VoxCPM
synced 2025-12-12 11:58:11 +00:00
Remove segment text logic
This commit is contained in:
@@ -120,10 +120,17 @@ class VoxCPM:
|
||||
Returns:
|
||||
numpy.ndarray: 1D waveform array (float32) on CPU.
|
||||
"""
|
||||
texts = text.split("\n")
|
||||
texts = [t.strip() for t in texts if t.strip()]
|
||||
final_wav = []
|
||||
temp_prompt_wav_path = None
|
||||
if not text.strip() or not isinstance(text, str):
|
||||
raise ValueError("target text must be a non-empty string")
|
||||
|
||||
if prompt_wav_path is not None:
|
||||
if not os.path.exists(prompt_wav_path):
|
||||
raise FileNotFoundError(f"prompt_wav_path does not exist: {prompt_wav_path}")
|
||||
|
||||
if (prompt_wav_path is None) != (prompt_text is None):
|
||||
raise ValueError("prompt_wav_path and prompt_text must both be provided or both be None")
|
||||
|
||||
temp_prompt_wav_path = None
|
||||
|
||||
try:
|
||||
if prompt_wav_path is not None and prompt_text is not None:
|
||||
@@ -139,35 +146,25 @@ class VoxCPM:
|
||||
else:
|
||||
fixed_prompt_cache = None # will be built from the first inference
|
||||
|
||||
for sub_text in texts:
|
||||
if sub_text.strip() == "":
|
||||
continue
|
||||
print("sub_text:", sub_text)
|
||||
if normalize:
|
||||
if self.text_normalizer is None:
|
||||
from .utils.text_normalize import TextNormalizer
|
||||
self.text_normalizer = TextNormalizer()
|
||||
sub_text = self.text_normalizer.normalize(sub_text)
|
||||
wav, target_text_token, generated_audio_feat = self.tts_model.generate_with_prompt_cache(
|
||||
target_text=sub_text,
|
||||
prompt_cache=fixed_prompt_cache,
|
||||
min_len=2,
|
||||
max_len=max_length,
|
||||
inference_timesteps=inference_timesteps,
|
||||
cfg_value=cfg_value,
|
||||
retry_badcase=retry_badcase,
|
||||
retry_badcase_max_times=retry_badcase_max_times,
|
||||
retry_badcase_ratio_threshold=retry_badcase_ratio_threshold,
|
||||
)
|
||||
if fixed_prompt_cache is None:
|
||||
fixed_prompt_cache = self.tts_model.merge_prompt_cache(
|
||||
original_cache=None,
|
||||
new_text_token=target_text_token,
|
||||
new_audio_feat=generated_audio_feat
|
||||
)
|
||||
final_wav.append(wav)
|
||||
if normalize:
|
||||
if self.text_normalizer is None:
|
||||
from .utils.text_normalize import TextNormalizer
|
||||
self.text_normalizer = TextNormalizer()
|
||||
text = self.text_normalizer.normalize(text)
|
||||
|
||||
wav, target_text_token, generated_audio_feat = self.tts_model.generate_with_prompt_cache(
|
||||
target_text=text,
|
||||
prompt_cache=fixed_prompt_cache,
|
||||
min_len=2,
|
||||
max_len=max_length,
|
||||
inference_timesteps=inference_timesteps,
|
||||
cfg_value=cfg_value,
|
||||
retry_badcase=retry_badcase,
|
||||
retry_badcase_max_times=retry_badcase_max_times,
|
||||
retry_badcase_ratio_threshold=retry_badcase_ratio_threshold,
|
||||
)
|
||||
|
||||
return torch.cat(final_wav, dim=1).squeeze(0).cpu().numpy()
|
||||
return wav.squeeze(0).cpu().numpy()
|
||||
|
||||
finally:
|
||||
if temp_prompt_wav_path and os.path.exists(temp_prompt_wav_path):
|
||||
|
||||
@@ -151,11 +151,16 @@ class VoxCPMModel(nn.Module):
|
||||
try:
|
||||
if self.device != "cuda":
|
||||
raise ValueError("VoxCPMModel can only be optimized on CUDA device")
|
||||
try:
|
||||
import triton
|
||||
except:
|
||||
raise ValueError("triton is not installed")
|
||||
self.base_lm.forward_step = torch.compile(self.base_lm.forward_step, mode="reduce-overhead", fullgraph=True)
|
||||
self.residual_lm.forward_step = torch.compile(self.residual_lm.forward_step, mode="reduce-overhead", fullgraph=True)
|
||||
self.feat_encoder_step = torch.compile(self.feat_encoder, mode="reduce-overhead", fullgraph=True)
|
||||
self.feat_decoder.estimator = torch.compile(self.feat_decoder.estimator, mode="reduce-overhead", fullgraph=True)
|
||||
except:
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print("VoxCPMModel can not be optimized by torch.compile, using original forward_step functions")
|
||||
self.base_lm.forward_step = self.base_lm.forward_step
|
||||
self.residual_lm.forward_step = self.residual_lm.forward_step
|
||||
@@ -317,7 +322,7 @@ class VoxCPMModel(nn.Module):
|
||||
audio = torch.nn.functional.pad(audio, (0, patch_len - audio.size(1) % patch_len))
|
||||
|
||||
# extract audio features
|
||||
audio_feat = self.audio_vae.encode(audio.cuda(), self.sample_rate).cpu()
|
||||
audio_feat = self.audio_vae.encode(audio.to(self.device), self.sample_rate).cpu()
|
||||
|
||||
audio_feat = audio_feat.view(
|
||||
self.audio_vae.latent_dim,
|
||||
|
||||
Reference in New Issue
Block a user