Update: VoxCPM1.5 and fine-tuning supprt

This commit is contained in:
Labmem-Zhouyx
2025-12-05 21:00:01 +08:00
parent d1bb6aaf41
commit 461ad7e506
29 changed files with 2928 additions and 228 deletions

214
src/voxcpm/training/data.py Normal file
View File

@@ -0,0 +1,214 @@
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import argbind
import torch
from datasets import Audio, Dataset, DatasetDict, load_dataset
from torch.utils.data import Dataset as TorchDataset
from ..model.voxcpm import VoxCPMConfig
from ..modules.audiovae import AudioVAE
from .packers import AudioFeatureProcessingPacker
DEFAULT_TEXT_COLUMN = "text"
DEFAULT_AUDIO_COLUMN = "audio"
DEFAULT_ID_COLUMN = "dataset_id"
@argbind.bind()
def load_audio_text_datasets(
train_manifest: str,
val_manifest: str = "",
text_column: str = DEFAULT_TEXT_COLUMN,
audio_column: str = DEFAULT_AUDIO_COLUMN,
dataset_id_column: str = DEFAULT_ID_COLUMN,
sample_rate: int = 16_000,
num_proc: int = 1,
) -> Tuple[Dataset, Optional[Dataset]]:
data_files = {"train": train_manifest}
if val_manifest:
data_files["validation"] = val_manifest
dataset_dict: DatasetDict = load_dataset("json", data_files=data_files)
def prepare(ds: Dataset) -> Dataset:
if audio_column not in ds.column_names:
raise ValueError(f"Expected '{audio_column}' column in manifest.")
# We cast to Audio to ensure proper handling during training,
# but for length calculation we might need raw path or duration if available.
# HF datasets usually don't compute duration automatically for 'Audio' column.
ds = ds.cast_column(audio_column, Audio(sampling_rate=sample_rate))
if audio_column != DEFAULT_AUDIO_COLUMN:
ds = ds.rename_column(audio_column, DEFAULT_AUDIO_COLUMN)
if text_column != DEFAULT_TEXT_COLUMN:
ds = ds.rename_column(text_column, DEFAULT_TEXT_COLUMN)
if dataset_id_column and dataset_id_column in ds.column_names:
if dataset_id_column != DEFAULT_ID_COLUMN:
ds = ds.rename_column(dataset_id_column, DEFAULT_ID_COLUMN)
else:
ds = ds.add_column(DEFAULT_ID_COLUMN, [0] * len(ds))
return ds
train_ds = prepare(dataset_dict["train"])
val_ds = prepare(dataset_dict["validation"]) if "validation" in dataset_dict else None
return train_ds, val_ds
def compute_sample_lengths(
ds: Dataset,
audio_vae_fps: int = 25,
patch_size: int = 1,
) -> List[int]:
"""
预估每个样本经过 packer 之后的大致序列长度text+audio用于过滤超长样本。
逻辑与 AudioFeatureProcessingPacker / AudioVAE 一致:
- 文本长度: len(text_ids)
- 音频长度:
duration(s) * audio_vae_fps -> 近似 VAE 帧数 t_vae
t_seq = ceil(t_vae / patch_size)
- 序列总长约为: text_len + t_seq + 2
"""
lengths: List[int] = []
has_duration = "duration" in ds.column_names
for i in range(len(ds)):
item = ds[i]
text_len = len(item["text_ids"])
# 音频时长(尽量不解码;若 manifest 里已有 duration 列则优先使用)
if has_duration:
duration = float(item["duration"])
else:
audio = item[DEFAULT_AUDIO_COLUMN]
duration = len(audio["array"]) / float(audio["sampling_rate"])
t_vae = math.ceil(duration * audio_vae_fps)
t_seq = math.ceil(t_vae / patch_size)
total_len = text_len + t_seq + 2
lengths.append(total_len)
return lengths
class HFVoxCPMDataset(TorchDataset):
"""
Thin wrapper around a tokenized HuggingFace dataset that returns
PyTorch-friendly samples.
"""
def __init__(self, dataset: Dataset):
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx: int):
item = self.dataset[idx]
audio = item[DEFAULT_AUDIO_COLUMN]
return {
"text_ids": item["text_ids"],
"audio_array": audio["array"],
"audio_sampling_rate": audio["sampling_rate"],
"dataset_id": item.get(DEFAULT_ID_COLUMN, 0),
"is_prompt": item.get("is_prompt", False),
}
@staticmethod
def pad_sequences(seqs: List[torch.Tensor], pad_value: float):
if not seqs:
return torch.empty(0)
max_len = max(seq.shape[0] for seq in seqs)
padded = []
for seq in seqs:
if seq.shape[0] < max_len:
pad_width = (0, max_len - seq.shape[0])
seq = torch.nn.functional.pad(seq, pad_width, value=pad_value)
padded.append(seq)
return torch.stack(padded)
@classmethod
def collate_fn(cls, batch: List[Dict]):
text_tensors = [torch.tensor(sample["text_ids"], dtype=torch.int32) for sample in batch]
audio_tensors = [torch.tensor(sample["audio_array"], dtype=torch.float32) for sample in batch]
dataset_ids = torch.tensor([sample["dataset_id"] for sample in batch], dtype=torch.int32)
is_prompts = [bool(sample.get("is_prompt", False)) for sample in batch]
text_padded = cls.pad_sequences(text_tensors, pad_value=-100)
audio_padded = cls.pad_sequences(audio_tensors, pad_value=-100.0)
task_ids = torch.ones(text_padded.size(0), dtype=torch.int32)
return {
"text_tokens": text_padded,
"audio_tokens": audio_padded,
"task_ids": task_ids,
"dataset_ids": dataset_ids,
"is_prompts": is_prompts,
}
class BatchProcessor:
"""
Wraps ``AudioFeatureProcessingPacker`` so the training loop can mirror
the minicpm-audio mechanics.
"""
def __init__(
self,
*,
config: VoxCPMConfig,
audio_vae: AudioVAE,
dataset_cnt: int,
device: torch.device,
):
self.device = device
self.dataset_cnt = dataset_cnt
self.audio_vae = audio_vae
self.audio_vae.to(device)
self.packer = AudioFeatureProcessingPacker(
dataset_cnt=dataset_cnt,
max_len=config.max_length,
patch_size=config.patch_size,
feat_dim=config.feat_dim,
audio_vae=self.audio_vae,
)
def __call__(self, batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
audio_tokens = batch["audio_tokens"].to(self.device)
text_tokens = batch["text_tokens"].to(self.device)
task_ids = batch["task_ids"].to(self.device)
dataset_ids = batch["dataset_ids"].to(self.device)
packed = self.packer(
audio_tokens=audio_tokens,
text_tokens=text_tokens,
task_ids=task_ids,
dataset_ids=dataset_ids,
is_prompts=batch["is_prompts"],
)
return packed
def build_dataloader(
hf_dataset: Dataset,
*,
accelerator,
batch_size: int,
num_workers: int,
drop_last: bool = False,
) -> torch.utils.data.DataLoader:
torch_dataset = HFVoxCPMDataset(hf_dataset)
# Standard padding-based batching; Accelerator will attach DistributedSampler if needed.
return accelerator.prepare_dataloader(
torch_dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=True,
collate_fn=HFVoxCPMDataset.collate_fn,
drop_last=drop_last,
)