Modify lora inference api

This commit is contained in:
刘鑫
2025-12-05 22:22:13 +08:00
parent b1f7593ae0
commit 400f47a516
5 changed files with 265 additions and 139 deletions

View File

@@ -3,7 +3,7 @@
Full finetune inference script (no LoRA).
Checkpoint directory contains complete model files (pytorch_model.bin, config.json, audiovae.pth, etc.),
can be loaded directly via VoxCPMModel.from_local().
can be loaded directly via VoxCPM.
Usage:
@@ -26,9 +26,8 @@ import argparse
from pathlib import Path
import soundfile as sf
import torch
from voxcpm.model import VoxCPMModel
from voxcpm.core import VoxCPM
def parse_args():
@@ -81,49 +80,52 @@ def parse_args():
default=600,
help="Max generation steps",
)
parser.add_argument(
"--normalize",
action="store_true",
help="Enable text normalization",
)
return parser.parse_args()
def main():
args = parse_args()
# Load model from checkpoint directory
# Load model from checkpoint directory (no denoiser)
print(f"[FT Inference] Loading model: {args.ckpt_dir}")
model = VoxCPMModel.from_local(args.ckpt_dir, optimize=True, training=False)
model = VoxCPM.from_pretrained(
hf_model_id=args.ckpt_dir,
load_denoiser=False,
optimize=True,
)
# Run inference
prompt_wav_path = args.prompt_audio or ""
prompt_text = args.prompt_text or ""
prompt_wav_path = args.prompt_audio if args.prompt_audio else None
prompt_text = args.prompt_text if args.prompt_text else None
print(f"[FT Inference] Synthesizing: text='{args.text}'")
if prompt_wav_path:
print(f"[FT Inference] Using reference audio: {prompt_wav_path}")
print(f"[FT Inference] Reference text: {prompt_text}")
with torch.inference_mode():
audio = model.generate(
target_text=args.text,
prompt_text=prompt_text,
prompt_wav_path=prompt_wav_path,
max_len=args.max_len,
inference_timesteps=args.inference_timesteps,
cfg_value=args.cfg_value,
)
# Squeeze and save audio
if isinstance(audio, torch.Tensor):
audio_np = audio.squeeze(0).cpu().numpy()
else:
raise TypeError(f"Unexpected return type from model.generate: {type(audio)}")
audio_np = model.generate(
text=args.text,
prompt_wav_path=prompt_wav_path,
prompt_text=prompt_text,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
max_length=args.max_len,
normalize=args.normalize,
denoise=False,
)
# Save audio
out_path = Path(args.output)
out_path.parent.mkdir(parents=True, exist_ok=True)
sf.write(str(out_path), audio_np, model.sample_rate)
sf.write(str(out_path), audio_np, model.tts_model.sample_rate)
print(f"[FT Inference] Saved to: {out_path}, duration: {len(audio_np) / model.sample_rate:.2f}s")
print(f"[FT Inference] Saved to: {out_path}, duration: {len(audio_np) / model.tts_model.sample_rate:.2f}s")
if __name__ == "__main__":
main()