mirror of
https://github.com/OpenBMB/VoxCPM
synced 2025-12-12 11:58:11 +00:00
surport load model from local path
This commit is contained in:
76
src/voxcpm/zipenhancer.py
Normal file
76
src/voxcpm/zipenhancer.py
Normal file
@@ -0,0 +1,76 @@
|
||||
"""
|
||||
ZipEnhancer Module - Audio Denoising Enhancer
|
||||
|
||||
Provides on-demand import ZipEnhancer functionality for audio denoising processing.
|
||||
Related dependencies are imported only when denoising functionality is needed.
|
||||
"""
|
||||
|
||||
import os
|
||||
import tempfile
|
||||
from typing import Optional, Union
|
||||
import torchaudio
|
||||
import torch
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
|
||||
class ZipEnhancer:
|
||||
"""ZipEnhancer Audio Denoising Enhancer"""
|
||||
def __init__(self, model_path: str = "iic/speech_zipenhancer_ans_multiloss_16k_base"):
|
||||
"""
|
||||
Initialize ZipEnhancer
|
||||
Args:
|
||||
model_path: ModelScope model path or local path
|
||||
"""
|
||||
self.model_path = model_path
|
||||
self._pipeline = pipeline(
|
||||
Tasks.acoustic_noise_suppression,
|
||||
model=self.model_path
|
||||
)
|
||||
|
||||
def _normalize_loudness(self, wav_path: str):
|
||||
"""
|
||||
Audio loudness normalization
|
||||
|
||||
Args:
|
||||
wav_path: Audio file path
|
||||
"""
|
||||
audio, sr = torchaudio.load(wav_path)
|
||||
loudness = torchaudio.functional.loudness(audio, sr)
|
||||
normalized_audio = torchaudio.functional.gain(audio, -20-loudness)
|
||||
torchaudio.save(wav_path, normalized_audio, sr)
|
||||
|
||||
def enhance(self, input_path: str, output_path: Optional[str] = None,
|
||||
normalize_loudness: bool = True) -> str:
|
||||
"""
|
||||
Audio denoising enhancement
|
||||
Args:
|
||||
input_path: Input audio file path
|
||||
output_path: Output audio file path (optional, creates temp file by default)
|
||||
normalize_loudness: Whether to perform loudness normalization
|
||||
Returns:
|
||||
str: Output audio file path
|
||||
Raises:
|
||||
RuntimeError: If pipeline is not initialized or processing fails
|
||||
"""
|
||||
if not os.path.exists(input_path):
|
||||
raise FileNotFoundError(f"Input audio file does not exist: {input_path}")
|
||||
# Create temporary file if no output path is specified
|
||||
if output_path is None:
|
||||
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
|
||||
output_path = tmp_file.name
|
||||
try:
|
||||
# Perform denoising processing
|
||||
self._pipeline(input_path, output_path=output_path)
|
||||
# Loudness normalization
|
||||
if normalize_loudness:
|
||||
self._normalize_loudness(output_path)
|
||||
return output_path
|
||||
except Exception as e:
|
||||
# Clean up possibly created temporary files
|
||||
if output_path and os.path.exists(output_path):
|
||||
try:
|
||||
os.unlink(output_path)
|
||||
except OSError:
|
||||
pass
|
||||
raise RuntimeError(f"Audio denoising processing failed: {e}")
|
||||
Reference in New Issue
Block a user