363 lines
14 KiB
Python
363 lines
14 KiB
Python
#!/usr/bin/env python3
|
|
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
project_root = Path(__file__).parent.parent
|
|
sys.path.insert(0, str(project_root / "src"))
|
|
|
|
import contextlib
|
|
from typing import Dict, Optional
|
|
|
|
import argbind
|
|
import torch
|
|
from tensorboardX import SummaryWriter
|
|
from torch.optim import AdamW
|
|
from transformers import get_cosine_schedule_with_warmup
|
|
|
|
try:
|
|
from safetensors.torch import save_file
|
|
SAFETENSORS_AVAILABLE = True
|
|
except ImportError:
|
|
SAFETENSORS_AVAILABLE = False
|
|
print("Warning: safetensors not available, will use pytorch format")
|
|
|
|
from voxcpm.model import VoxCPMModel
|
|
from voxcpm.model.voxcpm import LoRAConfig
|
|
from voxcpm.training import (
|
|
Accelerator,
|
|
BatchProcessor,
|
|
TrainingTracker,
|
|
build_dataloader,
|
|
load_audio_text_datasets,
|
|
)
|
|
|
|
|
|
@argbind.bind(without_prefix=True)
|
|
def train(
|
|
pretrained_path: str,
|
|
train_manifest: str,
|
|
val_manifest: str = "",
|
|
sample_rate: int = 16_000,
|
|
batch_size: int = 1,
|
|
grad_accum_steps: int = 1,
|
|
num_workers: int = 2,
|
|
num_iters: int = 100_000,
|
|
log_interval: int = 100,
|
|
valid_interval: int = 1_000,
|
|
save_interval: int = 10_000,
|
|
learning_rate: float = 1e-4,
|
|
weight_decay: float = 1e-2,
|
|
warmup_steps: int = 1_000,
|
|
max_steps: int = 100_000,
|
|
max_batch_tokens: int = 0,
|
|
save_path: str = "checkpoints",
|
|
tensorboard: str = "",
|
|
lambdas: Dict[str, float] = {"loss/diff": 1.0, "loss/stop": 1.0},
|
|
lora: dict = None,
|
|
config_path: str = "",
|
|
):
|
|
_ = config_path
|
|
accelerator = Accelerator(amp=True)
|
|
|
|
save_dir = Path(save_path)
|
|
tb_dir = Path(tensorboard) if tensorboard else save_dir / "logs"
|
|
|
|
# Only create directories on rank 0 to avoid race conditions
|
|
if accelerator.rank == 0:
|
|
save_dir.mkdir(parents=True, exist_ok=True)
|
|
tb_dir.mkdir(parents=True, exist_ok=True)
|
|
accelerator.barrier() # Wait for directory creation
|
|
|
|
writer = SummaryWriter(log_dir=str(tb_dir)) if accelerator.rank == 0 else None
|
|
tracker = TrainingTracker(writer=writer, log_file=str(save_dir / "train.log"), rank=accelerator.rank)
|
|
|
|
base_model = VoxCPMModel.from_local(pretrained_path, optimize=False, training=True, lora_config=LoRAConfig(**lora) if lora else None)
|
|
tokenizer = base_model.text_tokenizer
|
|
|
|
train_ds, val_ds = load_audio_text_datasets(
|
|
train_manifest=train_manifest,
|
|
val_manifest=val_manifest,
|
|
sample_rate=sample_rate,
|
|
)
|
|
|
|
def tokenize(batch):
|
|
text_list = batch["text"]
|
|
text_ids = [tokenizer(text) for text in text_list]
|
|
return {"text_ids": text_ids}
|
|
|
|
train_ds = train_ds.map(tokenize, batched=True, remove_columns=["text"])
|
|
if val_ds is not None:
|
|
val_ds = val_ds.map(tokenize, batched=True, remove_columns=["text"])
|
|
|
|
dataset_cnt = int(max(train_ds["dataset_id"])) + 1 if "dataset_id" in train_ds.column_names else 1
|
|
num_train_samples = len(train_ds)
|
|
|
|
# ------------------------------------------------------------------ #
|
|
# Optional: filter samples by estimated token count to avoid OOM
|
|
# Enabled when max_batch_tokens > 0:
|
|
# max_sample_len = max_batch_tokens // batch_size
|
|
# Samples exceeding this length will be dropped
|
|
# ------------------------------------------------------------------ #
|
|
if max_batch_tokens and max_batch_tokens > 0:
|
|
from voxcpm.training.data import compute_sample_lengths
|
|
|
|
audio_vae_fps = base_model.audio_vae.sample_rate / base_model.audio_vae.hop_length
|
|
est_lengths = compute_sample_lengths(
|
|
train_ds,
|
|
audio_vae_fps=audio_vae_fps,
|
|
patch_size=base_model.config.patch_size,
|
|
)
|
|
max_sample_len = max_batch_tokens // batch_size if batch_size > 0 else max(est_lengths)
|
|
keep_indices = [i for i, L in enumerate(est_lengths) if L <= max_sample_len]
|
|
|
|
if len(keep_indices) < len(train_ds) and accelerator.rank == 0:
|
|
tracker.print(
|
|
f"Filtering {len(train_ds) - len(keep_indices)} / {len(train_ds)} "
|
|
f"training samples longer than {max_sample_len} tokens "
|
|
f"(max_batch_tokens={max_batch_tokens})."
|
|
)
|
|
train_ds = train_ds.select(keep_indices)
|
|
|
|
train_loader = build_dataloader(
|
|
train_ds,
|
|
accelerator=accelerator,
|
|
batch_size=batch_size,
|
|
num_workers=num_workers,
|
|
drop_last=True,
|
|
)
|
|
val_loader = (
|
|
build_dataloader(
|
|
val_ds,
|
|
accelerator=accelerator,
|
|
batch_size=batch_size,
|
|
num_workers=num_workers,
|
|
drop_last=False,
|
|
)
|
|
if val_ds is not None
|
|
else None
|
|
)
|
|
|
|
batch_processor = BatchProcessor(
|
|
config=base_model.config,
|
|
audio_vae=base_model.audio_vae,
|
|
dataset_cnt=dataset_cnt,
|
|
device=accelerator.device,
|
|
)
|
|
del base_model.audio_vae
|
|
model = accelerator.prepare_model(base_model)
|
|
unwrapped_model = accelerator.unwrap(model)
|
|
unwrapped_model.train()
|
|
|
|
|
|
# Only print param info on rank 0 to avoid cluttered output
|
|
if accelerator.rank == 0:
|
|
for name, param in model.named_parameters():
|
|
print(name, param.requires_grad)
|
|
|
|
optimizer = AdamW(
|
|
(p for p in model.parameters() if p.requires_grad),
|
|
lr=learning_rate,
|
|
weight_decay=weight_decay,
|
|
)
|
|
|
|
# Cosine + warmup scheduler from transformers:
|
|
# - num_warmup_steps: warmup steps
|
|
# - num_training_steps: total training steps (outer step count)
|
|
total_training_steps = max_steps if max_steps > 0 else num_iters
|
|
scheduler = get_cosine_schedule_with_warmup(
|
|
optimizer,
|
|
num_warmup_steps=warmup_steps,
|
|
num_training_steps=total_training_steps,
|
|
)
|
|
|
|
# Manual epoch management instead of itertools.cycle to support DistributedSampler.set_epoch()
|
|
grad_accum_steps = max(int(grad_accum_steps), 1)
|
|
data_epoch = 0
|
|
train_iter = iter(train_loader)
|
|
|
|
def get_next_batch():
|
|
"""Get next batch, handles epoch boundary and DistributedSampler."""
|
|
nonlocal train_iter, data_epoch
|
|
try:
|
|
return next(train_iter)
|
|
except StopIteration:
|
|
data_epoch += 1
|
|
# Key: set DistributedSampler epoch to ensure different data order each epoch
|
|
sampler = getattr(train_loader, 'sampler', None)
|
|
if hasattr(sampler, 'set_epoch'):
|
|
sampler.set_epoch(data_epoch)
|
|
train_iter = iter(train_loader)
|
|
return next(train_iter)
|
|
|
|
with tracker.live():
|
|
for step in range(num_iters):
|
|
tracker.step = step
|
|
optimizer.zero_grad(set_to_none=True)
|
|
|
|
# Gradient accumulation: accumulate gradients over micro-batches before optimizer step
|
|
loss_dict = {}
|
|
for micro_step in range(grad_accum_steps):
|
|
batch = get_next_batch()
|
|
processed = batch_processor(batch)
|
|
|
|
# Only sync gradients on the last micro-batch
|
|
# Use no_sync() for intermediate steps to reduce communication overhead
|
|
is_last_micro_step = (micro_step == grad_accum_steps - 1)
|
|
sync_context = contextlib.nullcontext() if is_last_micro_step else accelerator.no_sync()
|
|
|
|
with sync_context:
|
|
with accelerator.autocast(dtype=torch.bfloat16):
|
|
outputs = model(
|
|
processed["text_tokens"],
|
|
processed["text_mask"],
|
|
processed["audio_feats"],
|
|
processed["audio_mask"],
|
|
processed["loss_mask"],
|
|
processed["position_ids"],
|
|
processed["labels"],
|
|
progress=step / max(1, num_iters),
|
|
)
|
|
|
|
total_loss = 0.0
|
|
for key, value in outputs.items():
|
|
if key.startswith("loss/"):
|
|
weight = lambdas.get(key, 1.0)
|
|
loss_value = value * weight / grad_accum_steps
|
|
total_loss = total_loss + loss_value
|
|
# Record raw loss from last micro-batch for logging
|
|
loss_dict[key] = value.detach()
|
|
|
|
# Accumulate gradients (normalized by grad_accum_steps)
|
|
accelerator.backward(total_loss)
|
|
|
|
# After all micro-batches, do unscale / grad_norm / step
|
|
scaler = getattr(accelerator, "scaler", None)
|
|
if scaler is not None:
|
|
scaler.unscale_(optimizer)
|
|
# Use large max_norm to only compute grad_norm without actual clipping
|
|
grad_norm = torch.nn.utils.clip_grad_norm_(unwrapped_model.parameters(), max_norm=1e9)
|
|
|
|
accelerator.step(optimizer)
|
|
accelerator.update()
|
|
scheduler.step()
|
|
|
|
if step % log_interval == 0:
|
|
loss_values = {k: v.item() if isinstance(v, torch.Tensor) else float(v) for k, v in loss_dict.items()}
|
|
loss_values["lr"] = float(optimizer.param_groups[0]["lr"])
|
|
# Approximate epoch: seen samples / total samples (considering grad_accum and batch_size)
|
|
epoch = (step * grad_accum_steps * batch_size) / max(1, num_train_samples)
|
|
loss_values["epoch"] = float(epoch)
|
|
loss_values["grad_norm"] = float(grad_norm)
|
|
tracker.log_metrics(loss_values, split="train")
|
|
|
|
if val_loader is not None and step % valid_interval == 0 and step != 0:
|
|
validate(model, val_loader, batch_processor, accelerator, tracker, lambdas)
|
|
|
|
if step % save_interval == 0 and accelerator.rank == 0:
|
|
save_checkpoint(model, optimizer, scheduler, save_dir, step, pretrained_path)
|
|
|
|
if accelerator.rank == 0:
|
|
save_checkpoint(model, optimizer, scheduler, save_dir, num_iters, pretrained_path)
|
|
if writer:
|
|
writer.close()
|
|
|
|
|
|
def validate(model, val_loader, batch_processor, accelerator, tracker, lambdas):
|
|
model.eval()
|
|
losses = []
|
|
num_batches = 0
|
|
max_val_batches = 10
|
|
|
|
with torch.no_grad():
|
|
for batch in val_loader:
|
|
if num_batches >= max_val_batches:
|
|
break
|
|
processed = batch_processor(batch)
|
|
with accelerator.autocast(dtype=torch.bfloat16):
|
|
outputs = model(
|
|
processed["text_tokens"],
|
|
processed["text_mask"],
|
|
processed["audio_feats"],
|
|
processed["audio_mask"],
|
|
processed["loss_mask"],
|
|
processed["position_ids"],
|
|
processed["labels"],
|
|
progress=0.0,
|
|
sample_generate=False,
|
|
)
|
|
total = 0.0
|
|
for key, value in outputs.items():
|
|
if key.startswith("loss/"):
|
|
total += lambdas.get(key, 1.0) * value
|
|
losses.append(total.detach())
|
|
num_batches += 1
|
|
|
|
if losses:
|
|
mean_loss = torch.stack(losses).mean()
|
|
# All-reduce validation loss across processes for global average
|
|
accelerator.all_reduce(mean_loss)
|
|
tracker.log_metrics({"loss": mean_loss.item()}, split="val")
|
|
model.train()
|
|
|
|
|
|
def save_checkpoint(model, optimizer, scheduler, save_dir: Path, step: int, pretrained_path: str = None):
|
|
"""
|
|
Save checkpoint with different strategies for full finetune vs LoRA:
|
|
- Full finetune: save non-vae weights to model.safetensors (or pytorch_model.bin if safetensors unavailable)
|
|
- LoRA: save only lora weights to lora_weights.safetensors (or lora_weights.ckpt if safetensors unavailable)
|
|
"""
|
|
import shutil
|
|
|
|
save_dir.mkdir(parents=True, exist_ok=True)
|
|
tag = "latest" if step == 0 else f"step_{step:07d}"
|
|
folder = save_dir / tag
|
|
folder.mkdir(parents=True, exist_ok=True)
|
|
|
|
unwrapped = model.module if hasattr(model, "module") else model
|
|
full_state = unwrapped.state_dict()
|
|
lora_cfg = unwrapped.lora_config
|
|
|
|
if lora_cfg is not None:
|
|
# LoRA finetune: save only lora_A/lora_B weights
|
|
state_dict = {k: v for k, v in full_state.items() if "lora_" in k}
|
|
if SAFETENSORS_AVAILABLE:
|
|
save_file(state_dict, folder / "lora_weights.safetensors")
|
|
else:
|
|
torch.save({"state_dict": state_dict}, folder / "lora_weights.ckpt")
|
|
else:
|
|
# Full finetune: save non-vae weights to model.safetensors
|
|
state_dict = {k: v for k, v in full_state.items() if not k.startswith("audio_vae.")}
|
|
if SAFETENSORS_AVAILABLE:
|
|
save_file(state_dict, folder / "model.safetensors")
|
|
else:
|
|
torch.save({"state_dict": state_dict}, folder / "pytorch_model.bin")
|
|
|
|
# Copy config files from pretrained path
|
|
if pretrained_path:
|
|
pretrained_dir = Path(pretrained_path)
|
|
files_to_copy = ["config.json", "audiovae.pth", "tokenizer.json", "special_tokens_map.json", "tokenizer_config.json"]
|
|
for fname in files_to_copy:
|
|
src = pretrained_dir / fname
|
|
if src.exists():
|
|
shutil.copy2(src, folder / fname)
|
|
|
|
torch.save(optimizer.state_dict(), folder / "optimizer.pth")
|
|
torch.save(scheduler.state_dict(), folder / "scheduler.pth")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from voxcpm.training.config import load_yaml_config
|
|
|
|
args = argbind.parse_args()
|
|
config_file = args.get("config_path")
|
|
# If YAML config provided, use YAML args to call train
|
|
if config_file:
|
|
yaml_args = load_yaml_config(config_file)
|
|
train(**yaml_args)
|
|
else:
|
|
# Otherwise use command line args (parsed by argbind)
|
|
with argbind.scope(args):
|
|
train()
|
|
|