Files
VoxCPM-use/scripts/test_voxcpm_lora_infer.py
2025-12-05 22:22:13 +08:00

226 lines
7.3 KiB
Python

#!/usr/bin/env python3
"""
LoRA inference test script.
Usage:
python scripts/test_voxcpm_lora_infer.py \
--config_path conf/voxcpm/voxcpm_finetune_test.yaml \
--lora_ckpt checkpoints/step_0002000 \
--text "Hello, this is LoRA finetuned result." \
--output lora_test.wav
With voice cloning:
python scripts/test_voxcpm_lora_infer.py \
--config_path conf/voxcpm/voxcpm_finetune_test.yaml \
--lora_ckpt checkpoints/step_0002000 \
--text "This is voice cloning result." \
--prompt_audio path/to/ref.wav \
--prompt_text "Reference audio transcript" \
--output lora_clone.wav
"""
import argparse
from pathlib import Path
import soundfile as sf
from voxcpm.core import VoxCPM
from voxcpm.model.voxcpm import LoRAConfig
from voxcpm.training.config import load_yaml_config
def parse_args():
parser = argparse.ArgumentParser("VoxCPM LoRA inference test")
parser.add_argument(
"--config_path",
type=str,
required=True,
help="Training YAML config path (contains pretrained_path and lora config)",
)
parser.add_argument(
"--lora_ckpt",
type=str,
required=True,
help="LoRA checkpoint directory (contains lora_weights.ckpt with lora_A/lora_B only)",
)
parser.add_argument(
"--text",
type=str,
required=True,
help="Target text to synthesize",
)
parser.add_argument(
"--prompt_audio",
type=str,
default="",
help="Optional: reference audio path for voice cloning",
)
parser.add_argument(
"--prompt_text",
type=str,
default="",
help="Optional: transcript of reference audio",
)
parser.add_argument(
"--output",
type=str,
default="lora_test.wav",
help="Output wav file path",
)
parser.add_argument(
"--cfg_value",
type=float,
default=2.0,
help="CFG scale (default: 2.0)",
)
parser.add_argument(
"--inference_timesteps",
type=int,
default=10,
help="Diffusion inference steps (default: 10)",
)
parser.add_argument(
"--max_len",
type=int,
default=600,
help="Max generation steps",
)
parser.add_argument(
"--normalize",
action="store_true",
help="Enable text normalization",
)
return parser.parse_args()
def main():
args = parse_args()
# 1. Load YAML config
cfg = load_yaml_config(args.config_path)
pretrained_path = cfg["pretrained_path"]
lora_cfg_dict = cfg.get("lora", {}) or {}
lora_cfg = LoRAConfig(**lora_cfg_dict) if lora_cfg_dict else None
# 2. Check LoRA checkpoint
ckpt_dir = args.lora_ckpt
if not Path(ckpt_dir).exists():
raise FileNotFoundError(f"LoRA checkpoint not found: {ckpt_dir}")
# 3. Load model with LoRA (no denoiser)
print(f"[1/2] Loading model with LoRA: {pretrained_path}")
print(f" LoRA weights: {ckpt_dir}")
model = VoxCPM.from_pretrained(
hf_model_id=pretrained_path,
load_denoiser=False,
optimize=True,
lora_config=lora_cfg,
lora_weights_path=ckpt_dir,
)
# 4. Synthesize audio
prompt_wav_path = args.prompt_audio if args.prompt_audio else None
prompt_text = args.prompt_text if args.prompt_text else None
out_path = Path(args.output)
out_path.parent.mkdir(parents=True, exist_ok=True)
print(f"\n[2/2] Starting synthesis tests...")
# === Test 1: With LoRA ===
print(f"\n [Test 1] Synthesize with LoRA...")
audio_np = model.generate(
text=args.text,
prompt_wav_path=prompt_wav_path,
prompt_text=prompt_text,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
max_length=args.max_len,
normalize=args.normalize,
denoise=False,
)
lora_output = out_path.with_stem(out_path.stem + "_with_lora")
sf.write(str(lora_output), audio_np, model.tts_model.sample_rate)
print(f" Saved: {lora_output}, duration: {len(audio_np) / model.tts_model.sample_rate:.2f}s")
# === Test 2: Disable LoRA (via set_lora_enabled) ===
print(f"\n [Test 2] Disable LoRA (set_lora_enabled=False)...")
model.set_lora_enabled(False)
audio_np = model.generate(
text=args.text,
prompt_wav_path=prompt_wav_path,
prompt_text=prompt_text,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
max_length=args.max_len,
normalize=args.normalize,
denoise=False,
)
disabled_output = out_path.with_stem(out_path.stem + "_lora_disabled")
sf.write(str(disabled_output), audio_np, model.tts_model.sample_rate)
print(f" Saved: {disabled_output}, duration: {len(audio_np) / model.tts_model.sample_rate:.2f}s")
# === Test 3: Re-enable LoRA ===
print(f"\n [Test 3] Re-enable LoRA (set_lora_enabled=True)...")
model.set_lora_enabled(True)
audio_np = model.generate(
text=args.text,
prompt_wav_path=prompt_wav_path,
prompt_text=prompt_text,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
max_length=args.max_len,
normalize=args.normalize,
denoise=False,
)
reenabled_output = out_path.with_stem(out_path.stem + "_lora_reenabled")
sf.write(str(reenabled_output), audio_np, model.tts_model.sample_rate)
print(f" Saved: {reenabled_output}, duration: {len(audio_np) / model.tts_model.sample_rate:.2f}s")
# === Test 4: Unload LoRA (reset_lora_weights) ===
print(f"\n [Test 4] Unload LoRA (unload_lora)...")
model.unload_lora()
audio_np = model.generate(
text=args.text,
prompt_wav_path=prompt_wav_path,
prompt_text=prompt_text,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
max_length=args.max_len,
normalize=args.normalize,
denoise=False,
)
reset_output = out_path.with_stem(out_path.stem + "_lora_reset")
sf.write(str(reset_output), audio_np, model.tts_model.sample_rate)
print(f" Saved: {reset_output}, duration: {len(audio_np) / model.tts_model.sample_rate:.2f}s")
# === Test 5: Hot-reload LoRA (load_lora) ===
print(f"\n [Test 5] Hot-reload LoRA (load_lora)...")
loaded, skipped = model.load_lora(str(ckpt_dir))
print(f" Reloaded {len(loaded)} parameters")
audio_np = model.generate(
text=args.text,
prompt_wav_path=prompt_wav_path,
prompt_text=prompt_text,
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
max_length=args.max_len,
normalize=args.normalize,
denoise=False,
)
reload_output = out_path.with_stem(out_path.stem + "_lora_reloaded")
sf.write(str(reload_output), audio_np, model.tts_model.sample_rate)
print(f" Saved: {reload_output}, duration: {len(audio_np) / model.tts_model.sample_rate:.2f}s")
print(f"\n[Done] All tests completed!")
print(f" - with_lora: {lora_output}")
print(f" - lora_disabled: {disabled_output}")
print(f" - lora_reenabled: {reenabled_output}")
print(f" - lora_reset: {reset_output}")
print(f" - lora_reloaded: {reload_output}")
if __name__ == "__main__":
main()