Replace the text normalization library

This commit is contained in:
刘鑫
2025-09-16 22:16:40 +08:00
parent 776c0d19fb
commit 605ac2d8e4
3 changed files with 12 additions and 69 deletions

View File

@@ -34,7 +34,7 @@ dependencies = [
"gradio",
"inflect",
"addict",
"WeTextProcessing",
"wetext",
"modelscope>=1.22.0",
"datasets>=2,<4",
"huggingface-hub",

View File

@@ -4,8 +4,6 @@ import os
import tempfile
from huggingface_hub import snapshot_download
from .model.voxcpm import VoxCPMModel
from .utils.text_normalize import TextNormalizer
class VoxCPM:
def __init__(self,
@@ -25,7 +23,7 @@ class VoxCPM:
"""
print(f"voxcpm_model_path: {voxcpm_model_path}, zipenhancer_model_path: {zipenhancer_model_path}, enable_denoiser: {enable_denoiser}")
self.tts_model = VoxCPMModel.from_local(voxcpm_model_path)
self.text_normalizer = TextNormalizer()
self.text_normalizer = None
if enable_denoiser and zipenhancer_model_path is not None:
from .zipenhancer import ZipEnhancer
self.denoiser = ZipEnhancer(zipenhancer_model_path)
@@ -33,7 +31,8 @@ class VoxCPM:
self.denoiser = None
print("Warm up VoxCPMModel...")
self.tts_model.generate(
target_text="Hello, this is the first test sentence."
target_text="Hello, this is the first test sentence.",
max_len=10,
)
@classmethod
@@ -145,6 +144,9 @@ class VoxCPM:
continue
print("sub_text:", sub_text)
if normalize:
if self.text_normalizer is None:
from .utils.text_normalize import TextNormalizer
self.text_normalizer = TextNormalizer()
sub_text = self.text_normalizer.normalize(sub_text)
wav, target_text_token, generated_audio_feat = self.tts_model.generate_with_prompt_cache(
target_text=sub_text,

View File

@@ -3,40 +3,7 @@ import re
import regex
import inflect
from functools import partial
from tn.chinese.normalizer import Normalizer as ZhNormalizer
from tn.english.normalizer import Normalizer as EnNormalizer
def normal_cut_sentence(text):
# 先处理括号内的逗号,将其替换为特殊标记
text = re.sub(r'([(][^)]*)([,])([^)]*[)])', r'\1&&&\3', text)
text = re.sub('([。!,?\?])([^’”])',r'\1\n\2',text)#普通断句符号且后面没有引号
text = re.sub('(\.{6})([^’”])',r'\1\n\2',text)#英文省略号且后面没有引号
text = re.sub('(\{2})([^’”])',r'\1\n\2',text)#中文省略号且后面没有引号
text = re.sub('([. ,。!;?\?\.{6}\{2}][’”])([^’”])',r'\1\n\2',text)#断句号+引号且后面没有引号
# 处理英文句子的分隔
text = re.sub(r'([.,!?])([^’”\'"])', r'\1\n\2', text) # 句号、感叹号、问号后面没有引号
text = re.sub(r'([.!?][’”\'"])([^’”\'"])', r'\1\n\2', text) # 句号、感叹号、问号加引号后面的部分
text = re.sub(r'([(][^)]*)(&&&)([^)]*[)])', r'\1\3', text)
text = [t for t in text.split("\n") if t]
return text
def cut_sentence_with_fix_length(text : str, length : int):
sentences = normal_cut_sentence(text)
cur_length = 0
res = ""
for sentence in sentences:
if not sentence:
continue
if cur_length > length or cur_length + len(sentence) > length:
yield res
res = ""
cur_length = 0
res += sentence
cur_length += len(sentence)
if res:
yield res
from wetext import Normalizer
chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]+')
@@ -195,8 +162,8 @@ def clean_text(text):
class TextNormalizer:
def __init__(self, tokenizer=None):
self.tokenizer = tokenizer
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, remove_interjections=False, overwrite_cache=True)
self.en_tn_model = EnNormalizer()
self.zh_tn_model = Normalizer(lang="zh", operator="tn", remove_erhua=True)
self.en_tn_model = Normalizer(lang="en", operator="tn")
self.inflect_parser = inflect.engine()
def normalize(self, text, split=False):
@@ -207,38 +174,12 @@ class TextNormalizer:
text = text.replace("=", "等于") # 修复 ”550 + 320 等于 870 千卡。“ 被错误正则为 ”五百五十加三百二十等于八七十千卡.“
if re.search(r'([\d$%^*_+≥≤≠×÷?=])', text): # 避免 英文连字符被错误正则为减
text = re.sub(r'(?<=[a-zA-Z0-9])-(?=\d)', ' - ', text) # 修复 x-2 被正则为 x负2
text = self.zh_tn_model.normalize(text)
text = re.sub(r'(?<=[a-zA-Z0-9])-(?=\d)', ' - ', text) # 修复 x-2 被正则为 x负2
text = self.zh_tn_model.normalize(text)
text = replace_blank(text)
text = replace_corner_mark(text)
text = remove_bracket(text)
text = re.sub(r'[,]+$', '', text)
else:
text = self.en_tn_model.normalize(text)
text = spell_out_number(text, self.inflect_parser)
if split is False:
return text
if __name__ == "__main__":
text_normalizer = TextNormalizer()
text = r"""今天我们学习一元二次方程。一元二次方程的标准形式是:
ax2+bx+c=0ax^2 + bx + c = 0ax2+bx+c=0
其中aaa、bbb 和 ccc 是常数xxx 是变量。这个方程的解可以通过求根公式来找到。
一元二次方程的解法有几种:
- 因式分解法通过将方程因式分解来求解。我们首先尝试将方程表达成两个括号的形式解决方程的解。比如方程x25x+6=0x^2 - 5x + 6 = 0x25x+6=0可以因式分解为(x2)(x3)=0(x - 2)(x - 3) = 0(x2)(x3)=0因此根为2和3。
- 配方法:通过配方将方程转化为完全平方的形式,从而解出。我们通过加上或减去适当的常数来完成这一过程,使得方程可以直接写成一个完全平方的形式。
- 求根公式:我们可以使用求根公式直接求出方程的解。这个公式适用于所有的一元二次方程,即使我们无法通过因式分解或配方法来解决时,也能使用该公式。
公式x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2ab±b24ac这个公式可以帮助我们求解任何一元二次方程的根。
对于一元二次方程,我们需要了解判别式。判别式的作用是帮助我们判断方程的解的个数和性质。判别式 Δ\DeltaΔ 由下式给出:Δ=b24ac\Delta = b^2 - 4acΔ=b24ac 根据判别式的值,我们可以知道:
- 如果 Δ>0\Delta > 0Δ>0方程有两个不相等的实数解。这是因为判别式大于0时根号内的值是正数所以我们可以得到两个不同的解。
- 如果 Δ=0\Delta = 0Δ=0方程有一个实数解。这是因为根号内的值为零导致两个解相等也就是说方程有一个解。
- 如果 Δ<0\Delta < 0Δ<0方程没有实数解。这意味着根号内的值是负数无法进行实数运算因此方程没有实数解可能有复数解。"""
texts = ["这是一个公式 (a+b)³=a³+3a²b+3ab²+b³ S=(a×b)÷2", "这样的发展为AI仅仅作为“工具”这一观点提出了新的挑战", "550 + 320 = 870千卡。", "解一元二次方程3x^2+x-2=0", "你好啊"]
texts = [text]
for text in texts:
text = text_normalizer.normalize(text)
print(text)
for t in cut_sentence_with_fix_length(text, 15):
print(t)