Add a streaming API for VoxCPM

This commit is contained in:
AbrahamSanders
2025-09-19 16:56:11 -04:00
parent 5f56d5ff5d
commit 5c5da0dbe6
3 changed files with 144 additions and 53 deletions

3
.gitignore vendored Normal file
View File

@@ -0,0 +1,3 @@
launch.json
__pycache__
voxcpm.egg-info

View File

@@ -1,8 +1,8 @@
import torch
import torchaudio
import os
import re
import tempfile
import numpy as np
from typing import Generator
from huggingface_hub import snapshot_download
from .model.voxcpm import VoxCPMModel
@@ -11,6 +11,7 @@ class VoxCPM:
voxcpm_model_path : str,
zipenhancer_model_path : str = "iic/speech_zipenhancer_ans_multiloss_16k_base",
enable_denoiser : bool = True,
optimize: bool = True,
):
"""Initialize VoxCPM TTS pipeline.
@@ -21,9 +22,10 @@ class VoxCPM:
zipenhancer_model_path: ModelScope acoustic noise suppression model
id or local path. If None, denoiser will not be initialized.
enable_denoiser: Whether to initialize the denoiser pipeline.
optimize: Whether to optimize the model with torch.compile. True by default, but can be disabled for debugging.
"""
print(f"voxcpm_model_path: {voxcpm_model_path}, zipenhancer_model_path: {zipenhancer_model_path}, enable_denoiser: {enable_denoiser}")
self.tts_model = VoxCPMModel.from_local(voxcpm_model_path)
self.tts_model = VoxCPMModel.from_local(voxcpm_model_path, optimize=optimize)
self.text_normalizer = None
if enable_denoiser and zipenhancer_model_path is not None:
from .zipenhancer import ZipEnhancer
@@ -43,6 +45,7 @@ class VoxCPM:
zipenhancer_model_id: str = "iic/speech_zipenhancer_ans_multiloss_16k_base",
cache_dir: str = None,
local_files_only: bool = False,
**kwargs,
):
"""Instantiate ``VoxCPM`` from a Hugging Face Hub snapshot.
@@ -54,6 +57,8 @@ class VoxCPM:
cache_dir: Custom cache directory for the snapshot.
local_files_only: If True, only use local files and do not attempt
to download.
Kwargs:
Additional keyword arguments passed to the ``VoxCPM`` constructor.
Returns:
VoxCPM: Initialized instance whose ``voxcpm_model_path`` points to
@@ -82,9 +87,16 @@ class VoxCPM:
voxcpm_model_path=local_path,
zipenhancer_model_path=zipenhancer_model_id if load_denoiser else None,
enable_denoiser=load_denoiser,
**kwargs,
)
def generate(self,
def generate(self, *args, **kwargs) -> np.ndarray:
return next(self._generate(*args, streaming=False, **kwargs))
def generate_streaming(self, *args, **kwargs) -> Generator[np.ndarray, None, None]:
return self._generate(*args, streaming=True, **kwargs)
def _generate(self,
text : str,
prompt_wav_path : str = None,
prompt_text : str = None,
@@ -96,7 +108,8 @@ class VoxCPM:
retry_badcase : bool = True,
retry_badcase_max_times : int = 3,
retry_badcase_ratio_threshold : float = 6.0,
):
streaming: bool = False,
) -> Generator[np.ndarray, None, None]:
"""Synthesize speech for the given text and return a single waveform.
This method optionally builds and reuses a prompt cache. If an external
@@ -118,8 +131,11 @@ class VoxCPM:
retry_badcase: Whether to retry badcase.
retry_badcase_max_times: Maximum number of times to retry badcase.
retry_badcase_ratio_threshold: Threshold for audio-to-text ratio.
streaming: Whether to return a generator of audio chunks.
Returns:
numpy.ndarray: 1D waveform array (float32) on CPU.
Generator of numpy.ndarray: 1D waveform array (float32) on CPU.
Yields audio chunks for each generations step if ``streaming=True``,
otherwise yields a single array containing the final audio.
"""
if not text.strip() or not isinstance(text, str):
raise ValueError("target text must be a non-empty string")
@@ -155,7 +171,7 @@ class VoxCPM:
self.text_normalizer = TextNormalizer()
text = self.text_normalizer.normalize(text)
wav, target_text_token, generated_audio_feat = self.tts_model.generate_with_prompt_cache(
generate_result = self.tts_model._generate_with_prompt_cache(
target_text=text,
prompt_cache=fixed_prompt_cache,
min_len=2,
@@ -165,9 +181,11 @@ class VoxCPM:
retry_badcase=retry_badcase,
retry_badcase_max_times=retry_badcase_max_times,
retry_badcase_ratio_threshold=retry_badcase_ratio_threshold,
streaming=streaming,
)
return wav.squeeze(0).cpu().numpy()
for wav, _, _ in generate_result:
yield wav.squeeze(0).cpu().numpy()
finally:
if temp_prompt_wav_path and os.path.exists(temp_prompt_wav_path):

View File

@@ -19,11 +19,12 @@ limitations under the License.
"""
import os
from typing import Dict, Optional, Tuple, Union
from typing import Tuple, Union, Generator, List
import torch
import torch.nn as nn
import torchaudio
import warnings
from einops import rearrange
from pydantic import BaseModel
from tqdm import tqdm
@@ -147,8 +148,10 @@ class VoxCPMModel(nn.Module):
self.sample_rate = audio_vae.sample_rate
def optimize(self):
def optimize(self, disable: bool = False):
try:
if disable:
raise ValueError("Optimization disabled by user")
if self.device != "cuda":
raise ValueError("VoxCPMModel can only be optimized on CUDA device")
try:
@@ -169,8 +172,14 @@ class VoxCPMModel(nn.Module):
return self
def generate(self, *args, **kwargs) -> torch.Tensor:
return next(self._generate(*args, streaming=False, **kwargs))
def generate_streaming(self, *args, **kwargs) -> Generator[torch.Tensor, None, None]:
return self._generate(*args, streaming=True, **kwargs)
@torch.inference_mode()
def generate(
def _generate(
self,
target_text: str,
prompt_text: str = "",
@@ -182,7 +191,11 @@ class VoxCPMModel(nn.Module):
retry_badcase: bool = False,
retry_badcase_max_times: int = 3,
retry_badcase_ratio_threshold: float = 6.0, # setting acceptable ratio of audio length to text length (for badcase detection)
):
streaming: bool = False,
) -> Generator[torch.Tensor, None, None]:
if retry_badcase and streaming:
warnings.warn("Retry on bad cases is not supported in streaming mode, setting retry_badcase=False.")
retry_badcase = False
if len(prompt_wav_path) == 0:
text = target_text
text_token = torch.LongTensor(self.text_tokenizer(text))
@@ -265,7 +278,7 @@ class VoxCPMModel(nn.Module):
retry_badcase_times = 0
while retry_badcase_times < retry_badcase_max_times:
latent_pred, pred_audio_feat = self.inference(
inference_result = self._inference(
text_token,
text_mask,
audio_feat,
@@ -274,20 +287,31 @@ class VoxCPMModel(nn.Module):
max_len=int(target_text_length * retry_badcase_ratio_threshold + 10) if retry_badcase else max_len,
inference_timesteps=inference_timesteps,
cfg_value=cfg_value,
streaming=streaming,
)
if retry_badcase:
if pred_audio_feat.shape[0] >= target_text_length * retry_badcase_ratio_threshold:
print(f" Badcase detected, audio_text_ratio={pred_audio_feat.shape[0] / target_text_length}, retrying...")
retry_badcase_times += 1
continue
if streaming:
patch_len = self.patch_size * self.chunk_size
for latent_pred, _ in inference_result:
decode_audio = self.audio_vae.decode(latent_pred.to(torch.float32))
decode_audio = decode_audio[..., -patch_len:].squeeze(1).cpu()
yield decode_audio
break
else:
latent_pred, pred_audio_feat = next(inference_result)
if retry_badcase:
if pred_audio_feat.shape[0] >= target_text_length * retry_badcase_ratio_threshold:
print(f" Badcase detected, audio_text_ratio={pred_audio_feat.shape[0] / target_text_length}, retrying...")
retry_badcase_times += 1
continue
else:
break
else:
break
else:
break
decode_audio = self.audio_vae.decode(latent_pred.to(torch.float32)).squeeze(1).cpu()
decode_audio = decode_audio[..., 640:-640] # trick: trim the start and end of the audio
return decode_audio
if not streaming:
decode_audio = self.audio_vae.decode(latent_pred.to(torch.float32)).squeeze(1).cpu()
decode_audio = decode_audio[..., 640:-640] # trick: trim the start and end of the audio
yield decode_audio
@torch.inference_mode()
def build_prompt_cache(
@@ -377,8 +401,16 @@ class VoxCPMModel(nn.Module):
return merged_cache
def generate_with_prompt_cache(self, *args, **kwargs) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
return next(self._generate_with_prompt_cache(*args, streaming=False, **kwargs))
def generate_with_prompt_cache_streaming(
self, *args, **kwargs
) -> Generator[Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]], None, None]:
return self._generate_with_prompt_cache(*args, streaming=True, **kwargs)
@torch.inference_mode()
def generate_with_prompt_cache(
def _generate_with_prompt_cache(
self,
target_text: str,
prompt_cache: dict,
@@ -389,7 +421,8 @@ class VoxCPMModel(nn.Module):
retry_badcase: bool = False,
retry_badcase_max_times: int = 3,
retry_badcase_ratio_threshold: float = 6.0,
):
streaming: bool = False,
) -> Generator[Tuple[torch.Tensor, torch.Tensor, Union[torch.Tensor, List[torch.Tensor]]], None, None]:
"""
Generate audio using pre-built prompt cache.
@@ -403,10 +436,17 @@ class VoxCPMModel(nn.Module):
retry_badcase: Whether to retry on bad cases
retry_badcase_max_times: Maximum retry attempts
retry_badcase_ratio_threshold: Threshold for audio-to-text ratio
streaming: Whether to return a generator of audio chunks
Returns:
tuple: (decoded audio tensor, new text tokens, new audio features)
Generator of Tuple containing:
- Decoded audio tensor for the current step if ``streaming=True``, else final decoded audio tensor
- Tensor of new text tokens
- New audio features up to the current step as a List if ``streaming=True``, else as a concatenated Tensor
"""
if retry_badcase and streaming:
warnings.warn("Retry on bad cases is not supported in streaming mode, setting retry_badcase=False.")
retry_badcase = False
# get prompt from cache
if prompt_cache is None:
prompt_text_token = torch.empty(0, dtype=torch.int32)
@@ -451,7 +491,7 @@ class VoxCPMModel(nn.Module):
target_text_length = len(self.text_tokenizer(target_text))
retry_badcase_times = 0
while retry_badcase_times < retry_badcase_max_times:
latent_pred, pred_audio_feat = self.inference(
inference_result = self._inference(
text_token,
text_mask,
audio_feat,
@@ -460,27 +500,48 @@ class VoxCPMModel(nn.Module):
max_len=int(target_text_length * retry_badcase_ratio_threshold + 10) if retry_badcase else max_len,
inference_timesteps=inference_timesteps,
cfg_value=cfg_value,
streaming=streaming,
)
if retry_badcase:
if pred_audio_feat.shape[0] >= target_text_length * retry_badcase_ratio_threshold:
print(f" Badcase detected, audio_text_ratio={pred_audio_feat.shape[0] / target_text_length}, retrying...")
retry_badcase_times += 1
continue
if streaming:
patch_len = self.patch_size * self.chunk_size
for latent_pred, pred_audio_feat in inference_result:
decode_audio = self.audio_vae.decode(latent_pred.to(torch.float32))
decode_audio = decode_audio[..., -patch_len:].squeeze(1).cpu()
yield (
decode_audio,
target_text_token,
pred_audio_feat
)
break
else:
latent_pred, pred_audio_feat = next(inference_result)
if retry_badcase:
if pred_audio_feat.shape[0] >= target_text_length * retry_badcase_ratio_threshold:
print(f" Badcase detected, audio_text_ratio={pred_audio_feat.shape[0] / target_text_length}, retrying...")
retry_badcase_times += 1
continue
else:
break
else:
break
else:
break
decode_audio = self.audio_vae.decode(latent_pred.to(torch.float32)).squeeze(1).cpu()
decode_audio = decode_audio[..., 640:-640] # trick: trim the start and end of the audio
if not streaming:
decode_audio = self.audio_vae.decode(latent_pred.to(torch.float32)).squeeze(1).cpu()
decode_audio = decode_audio[..., 640:-640] # trick: trim the start and end of the audio
return (
decode_audio,
target_text_token,
pred_audio_feat
)
yield (
decode_audio,
target_text_token,
pred_audio_feat
)
def inference(self, *args, **kwargs) -> Tuple[torch.Tensor, torch.Tensor]:
return next(self._inference(*args, streaming=False, **kwargs))
def inference_streaming(self, *args, **kwargs) -> Generator[Tuple[torch.Tensor, List[torch.Tensor]], None, None]:
return self._inference(*args, streaming=True, **kwargs)
@torch.inference_mode()
def inference(
def _inference(
self,
text: torch.Tensor,
text_mask: torch.Tensor,
@@ -490,7 +551,8 @@ class VoxCPMModel(nn.Module):
max_len: int = 2000,
inference_timesteps: int = 10,
cfg_value: float = 2.0,
) -> Tuple[torch.Tensor, torch.Tensor]:
streaming: bool = False,
) -> Generator[Tuple[torch.Tensor, Union[torch.Tensor, List[torch.Tensor]]], None, None]:
"""Core inference method for audio generation.
This is the main inference loop that generates audio features
@@ -505,11 +567,12 @@ class VoxCPMModel(nn.Module):
max_len: Maximum generation length
inference_timesteps: Number of diffusion steps
cfg_value: Classifier-free guidance value
streaming: Whether to yield each step latent feature or just the final result
Returns:
Tuple containing:
- Predicted latent features
- Predicted audio feature sequence
Generator of Tuple containing:
- Predicted latent feature at the current step if ``streaming=True``, else final latent features
- Predicted audio feature sequence so far as a List if ``streaming=True``, else as a concatenated Tensor
"""
B, T, P, D = feat.shape
@@ -567,6 +630,12 @@ class VoxCPMModel(nn.Module):
pred_feat_seq.append(pred_feat.unsqueeze(1)) # b, 1, p, d
prefix_feat_cond = pred_feat
if streaming:
# return the last three predicted latent features to provide enough context for smooth decoding
pred_feat_chunk = torch.cat(pred_feat_seq[-3:], dim=1)
feat_pred = rearrange(pred_feat_chunk, "b t p d -> b d (t p)", b=B, p=self.patch_size)
yield feat_pred, pred_feat_seq
stop_flag = self.stop_head(self.stop_actn(self.stop_proj(lm_hidden))).argmax(dim=-1)[0].cpu().item()
if i > min_len and stop_flag == 1:
break
@@ -581,13 +650,14 @@ class VoxCPMModel(nn.Module):
lm_hidden + curr_embed[:, 0, :], torch.tensor([self.residual_lm.kv_cache.step()], device=curr_embed.device)
).clone()
pred_feat_seq = torch.cat(pred_feat_seq, dim=1) # b, t, p, d
if not streaming:
pred_feat_seq = torch.cat(pred_feat_seq, dim=1) # b, t, p, d
feat_pred = rearrange(pred_feat_seq, "b t p d -> b d (t p)", b=B, p=self.patch_size)
return feat_pred, pred_feat_seq.squeeze(0).cpu()
feat_pred = rearrange(pred_feat_seq, "b t p d -> b d (t p)", b=B, p=self.patch_size)
yield feat_pred, pred_feat_seq.squeeze(0).cpu()
@classmethod
def from_local(cls, path: str):
def from_local(cls, path: str, optimize: bool = True):
config = VoxCPMConfig.model_validate_json(open(os.path.join(path, "config.json")).read())
tokenizer = LlamaTokenizerFast.from_pretrained(path)
@@ -613,4 +683,4 @@ class VoxCPMModel(nn.Module):
for kw, val in vae_state_dict.items():
model_state_dict[f"audio_vae.{kw}"] = val
model.load_state_dict(model_state_dict, strict=True)
return model.to(model.device).eval().optimize()
return model.to(model.device).eval().optimize(disable=not optimize)