Update: VoxCPM1.5 and fine-tuning supprt
This commit is contained in:
355
docs/finetune.md
Normal file
355
docs/finetune.md
Normal file
@@ -0,0 +1,355 @@
|
||||
# VoxCPM Fine-tuning Guide
|
||||
|
||||
This guide covers how to fine-tune VoxCPM models with two approaches: full fine-tuning and LoRA fine-tuning.
|
||||
|
||||
### 🎓 SFT (Supervised Fine-Tuning)
|
||||
|
||||
Full fine-tuning updates all model parameters. Suitable for:
|
||||
- 📊 Large, specialized datasets
|
||||
- 🔄 Cases where significant behavior changes are needed
|
||||
|
||||
### ⚡ LoRA Fine-tuning
|
||||
|
||||
LoRA (Low-Rank Adaptation) is a parameter-efficient fine-tuning method that:
|
||||
- 🎯 Trains only a small number of additional parameters
|
||||
- 💾 Significantly reduces memory requirements and training time
|
||||
- 🔀 Supports multiple LoRA adapters with hot-swapping
|
||||
|
||||
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Data Preparation](#data-preparation)
|
||||
- [Full Fine-tuning](#full-fine-tuning)
|
||||
- [LoRA Fine-tuning](#lora-fine-tuning)
|
||||
- [Inference](#inference)
|
||||
- [LoRA Hot-swapping](#lora-hot-swapping)
|
||||
- [FAQ](#faq)
|
||||
|
||||
---
|
||||
|
||||
## Data Preparation
|
||||
|
||||
Training data should be prepared as a JSONL manifest file, with one sample per line:
|
||||
|
||||
```jsonl
|
||||
{"audio": "path/to/audio1.wav", "text": "Transcript of audio 1."}
|
||||
{"audio": "path/to/audio2.wav", "text": "Transcript of audio 2."}
|
||||
{"audio": "path/to/audio3.wav", "text": "Optional duration field.", "duration": 3.5}
|
||||
{"audio": "path/to/audio4.wav", "text": "Optional dataset_id for multi-dataset.", "dataset_id": 1}
|
||||
```
|
||||
|
||||
### Required Fields
|
||||
|
||||
| Field | Description |
|
||||
|-------|-------------|
|
||||
| `audio` | Path to audio file (absolute or relative) |
|
||||
| `text` | Corresponding transcript |
|
||||
|
||||
### Optional Fields
|
||||
|
||||
| Field | Description |
|
||||
|-------|-------------|
|
||||
| `duration` | Audio duration in seconds (speeds up sample filtering) |
|
||||
| `dataset_id` | Dataset ID for multi-dataset training (default: 0) |
|
||||
|
||||
### Requirements
|
||||
|
||||
- Audio format: WAV
|
||||
- Sample rate: 16kHz for VoxCPM-0.5B, 44.1kHz for VoxCPM1.5
|
||||
- Text: Transcript matching the audio content
|
||||
|
||||
See `examples/train_data_example.jsonl` for a complete example.
|
||||
|
||||
---
|
||||
|
||||
## Full Fine-tuning
|
||||
|
||||
Full fine-tuning updates all model parameters. Suitable for large datasets or when significant behavior changes are needed.
|
||||
|
||||
### Configuration
|
||||
|
||||
Create `conf/voxcpm_v1.5/voxcpm_finetune_all.yaml`:
|
||||
|
||||
```yaml
|
||||
pretrained_path: /path/to/VoxCPM1.5/
|
||||
train_manifest: /path/to/train.jsonl
|
||||
val_manifest: ""
|
||||
|
||||
sample_rate: 44100
|
||||
batch_size: 16
|
||||
grad_accum_steps: 1
|
||||
num_workers: 2
|
||||
num_iters: 2000
|
||||
log_interval: 10
|
||||
valid_interval: 1000
|
||||
save_interval: 1000
|
||||
|
||||
learning_rate: 0.00001 # Use smaller LR for full fine-tuning
|
||||
weight_decay: 0.01
|
||||
warmup_steps: 100
|
||||
max_steps: 2000
|
||||
max_batch_tokens: 8192
|
||||
|
||||
save_path: /path/to/checkpoints/finetune_all
|
||||
tensorboard: /path/to/logs/finetune_all
|
||||
|
||||
lambdas:
|
||||
loss/diff: 1.0
|
||||
loss/stop: 1.0
|
||||
```
|
||||
|
||||
### Training
|
||||
|
||||
```bash
|
||||
# Single GPU
|
||||
python scripts/train_voxcpm_finetune.py --config_path conf/voxcpm_v1.5/voxcpm_finetune_all.yaml
|
||||
|
||||
# Multi-GPU
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 \
|
||||
scripts/train_voxcpm_finetune.py --config_path conf/voxcpm_v1.5/voxcpm_finetune_all.yaml
|
||||
```
|
||||
|
||||
### Checkpoint Structure
|
||||
|
||||
Full fine-tuning saves a complete model directory that can be loaded directly:
|
||||
|
||||
```
|
||||
checkpoints/finetune_all/
|
||||
└── step_0002000/
|
||||
├── model.safetensors # Model weights (excluding audio_vae)
|
||||
├── config.json # Model config
|
||||
├── audiovae.pth # Audio VAE weights
|
||||
├── tokenizer.json # Tokenizer
|
||||
├── tokenizer_config.json
|
||||
├── special_tokens_map.json
|
||||
├── optimizer.pth
|
||||
└── scheduler.pth
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## LoRA Fine-tuning
|
||||
|
||||
LoRA (Low-Rank Adaptation) is a parameter-efficient fine-tuning method that trains only a small number of additional parameters, significantly reducing memory requirements.
|
||||
|
||||
### Configuration
|
||||
|
||||
Create `conf/voxcpm_v1.5/voxcpm_finetune_lora.yaml`:
|
||||
|
||||
```yaml
|
||||
pretrained_path: /path/to/VoxCPM1.5/
|
||||
train_manifest: /path/to/train.jsonl
|
||||
val_manifest: ""
|
||||
|
||||
sample_rate: 44100
|
||||
batch_size: 16
|
||||
grad_accum_steps: 1
|
||||
num_workers: 2
|
||||
num_iters: 2000
|
||||
log_interval: 10
|
||||
valid_interval: 1000
|
||||
save_interval: 1000
|
||||
|
||||
learning_rate: 0.0001 # LoRA can use larger LR
|
||||
weight_decay: 0.01
|
||||
warmup_steps: 100
|
||||
max_steps: 2000
|
||||
max_batch_tokens: 8192
|
||||
|
||||
save_path: /path/to/checkpoints/finetune_lora
|
||||
tensorboard: /path/to/logs/finetune_lora
|
||||
|
||||
lambdas:
|
||||
loss/diff: 1.0
|
||||
loss/stop: 1.0
|
||||
|
||||
# LoRA configuration
|
||||
lora:
|
||||
enable_lm: true # Apply LoRA to Language Model
|
||||
enable_dit: true # Apply LoRA to Diffusion Transformer
|
||||
enable_proj: false # Apply LoRA to projection layers (optional)
|
||||
|
||||
r: 32 # LoRA rank (higher = more capacity)
|
||||
alpha: 16 # LoRA alpha, scaling = alpha / r
|
||||
dropout: 0.0
|
||||
|
||||
# Target modules
|
||||
target_modules_lm: ["q_proj", "v_proj", "k_proj", "o_proj"]
|
||||
target_modules_dit: ["q_proj", "v_proj", "k_proj", "o_proj"]
|
||||
```
|
||||
|
||||
### LoRA Parameters
|
||||
|
||||
| Parameter | Description | Recommended |
|
||||
|-----------|-------------|-------------|
|
||||
| `enable_lm` | Apply LoRA to LM (language model) | `true` |
|
||||
| `enable_dit` | Apply LoRA to DiT (diffusion model) | `true` (required for voice cloning) |
|
||||
| `r` | LoRA rank (higher = more capacity) | 16-64 |
|
||||
| `alpha` | Scaling factor, `scaling = alpha / r` | Usually `r/2` or `r` |
|
||||
| `target_modules_*` | Layer names to add LoRA | attention layers |
|
||||
|
||||
### Training
|
||||
|
||||
```bash
|
||||
# Single GPU
|
||||
python scripts/train_voxcpm_finetune.py --config_path conf/voxcpm_v1.5/voxcpm_finetune_lora.yaml
|
||||
|
||||
# Multi-GPU
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 \
|
||||
scripts/train_voxcpm_finetune.py --config_path conf/voxcpm_v1.5/voxcpm_finetune_lora.yaml
|
||||
```
|
||||
|
||||
### Checkpoint Structure
|
||||
|
||||
LoRA training saves only LoRA parameters:
|
||||
|
||||
```
|
||||
checkpoints/finetune_lora/
|
||||
└── step_0002000/
|
||||
├── lora_weights.safetensors # Only lora_A, lora_B parameters
|
||||
├── optimizer.pth
|
||||
└── scheduler.pth
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Inference
|
||||
|
||||
### Full Fine-tuning Inference
|
||||
|
||||
The checkpoint directory is a complete model, load it directly:
|
||||
|
||||
```bash
|
||||
python scripts/test_voxcpm_ft_infer.py \
|
||||
--ckpt_dir /path/to/checkpoints/finetune_all/step_0002000 \
|
||||
--text "Hello, this is the fine-tuned model." \
|
||||
--output output.wav
|
||||
```
|
||||
|
||||
With voice cloning:
|
||||
|
||||
```bash
|
||||
python scripts/test_voxcpm_ft_infer.py \
|
||||
--ckpt_dir /path/to/checkpoints/finetune_all/step_0002000 \
|
||||
--text "This is voice cloning result." \
|
||||
--prompt_audio /path/to/reference.wav \
|
||||
--prompt_text "Reference audio transcript" \
|
||||
--output cloned_output.wav
|
||||
```
|
||||
|
||||
### LoRA Inference
|
||||
|
||||
LoRA inference requires the training config (for LoRA structure) and LoRA checkpoint:
|
||||
|
||||
```bash
|
||||
python scripts/test_voxcpm_lora_infer.py \
|
||||
--config_path conf/voxcpm_v1.5/voxcpm_finetune_lora.yaml \
|
||||
--lora_ckpt /path/to/checkpoints/finetune_lora/step_0002000 \
|
||||
--text "Hello, this is LoRA fine-tuned result." \
|
||||
--output lora_output.wav
|
||||
```
|
||||
|
||||
With voice cloning:
|
||||
|
||||
```bash
|
||||
python scripts/test_voxcpm_lora_infer.py \
|
||||
--config_path conf/voxcpm_v1.5/voxcpm_finetune_lora.yaml \
|
||||
--lora_ckpt /path/to/checkpoints/finetune_lora/step_0002000 \
|
||||
--text "This is voice cloning with LoRA." \
|
||||
--prompt_audio /path/to/reference.wav \
|
||||
--prompt_text "Reference audio transcript" \
|
||||
--output cloned_output.wav
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## LoRA Hot-swapping
|
||||
|
||||
LoRA supports dynamic loading, unloading, and switching at inference time without reloading the entire model.
|
||||
|
||||
### API Reference
|
||||
|
||||
```python
|
||||
from voxcpm.model import VoxCPMModel
|
||||
from voxcpm.model.voxcpm import LoRAConfig
|
||||
|
||||
# 1. Load model with LoRA structure
|
||||
lora_cfg = LoRAConfig(
|
||||
enable_lm=True,
|
||||
enable_dit=True,
|
||||
r=32,
|
||||
alpha=16,
|
||||
target_modules_lm=["q_proj", "v_proj", "k_proj", "o_proj"],
|
||||
target_modules_dit=["q_proj", "v_proj", "k_proj", "o_proj"],
|
||||
)
|
||||
model = VoxCPMModel.from_local(
|
||||
pretrained_path,
|
||||
optimize=True, # Enable torch.compile acceleration
|
||||
lora_config=lora_cfg
|
||||
)
|
||||
|
||||
# 2. Load LoRA weights (works after torch.compile)
|
||||
loaded, skipped = model.load_lora_weights("/path/to/lora_checkpoint")
|
||||
print(f"Loaded {len(loaded)} params, skipped {len(skipped)}")
|
||||
|
||||
# 3. Disable LoRA (use base model only)
|
||||
model.set_lora_enabled(False)
|
||||
|
||||
# 4. Re-enable LoRA
|
||||
model.set_lora_enabled(True)
|
||||
|
||||
# 5. Unload LoRA (reset weights to zero)
|
||||
model.reset_lora_weights()
|
||||
|
||||
# 6. Hot-swap to another LoRA
|
||||
model.load_lora_weights("/path/to/another_lora_checkpoint")
|
||||
|
||||
# 7. Get current LoRA weights
|
||||
lora_state = model.get_lora_state_dict()
|
||||
```
|
||||
|
||||
### Method Reference
|
||||
|
||||
| Method | Description | torch.compile Compatible |
|
||||
|--------|-------------|--------------------------|
|
||||
| `load_lora_weights(path)` | Load LoRA weights from file | ✅ |
|
||||
| `set_lora_enabled(bool)` | Enable/disable LoRA | ✅ |
|
||||
| `reset_lora_weights()` | Reset LoRA weights to initial values | ✅ |
|
||||
| `get_lora_state_dict()` | Get current LoRA weights | ✅ |
|
||||
|
||||
---
|
||||
|
||||
## FAQ
|
||||
|
||||
### 1. Out of Memory (OOM)
|
||||
|
||||
- Increase `grad_accum_steps` (gradient accumulation)
|
||||
- Decrease `batch_size`
|
||||
- Use LoRA fine-tuning instead of full fine-tuning
|
||||
- Decrease `max_batch_tokens` to filter long samples
|
||||
|
||||
### 2. Poor LoRA Performance
|
||||
|
||||
- Increase `r` (LoRA rank)
|
||||
- Adjust `alpha` (try `alpha = r/2` or `alpha = r`)
|
||||
- Ensure `enable_dit: true` (required for voice cloning)
|
||||
- Increase training steps
|
||||
- Add more target modules
|
||||
|
||||
### 3. Training Not Converging
|
||||
|
||||
- Decrease `learning_rate`
|
||||
- Increase `warmup_steps`
|
||||
- Check data quality
|
||||
|
||||
### 4. LoRA Not Taking Effect at Inference
|
||||
|
||||
- Ensure inference config matches training config LoRA parameters
|
||||
- Check `load_lora_weights` return value - `skipped_keys` should be empty
|
||||
- Verify `set_lora_enabled(True)` is called
|
||||
|
||||
### 5. Checkpoint Loading Errors
|
||||
|
||||
- Full fine-tuning: checkpoint directory should contain `model.safetensors`(or `pytorch_model.bin`), `config.json`, `audiovae.pth`
|
||||
- LoRA: checkpoint directory should contain `lora_weights.safetensors` (or `lora_weights.ckpt`)
|
||||
Reference in New Issue
Block a user