Update: VoxCPM1.5 and fine-tuning supprt
This commit is contained in:
129
scripts/test_voxcpm_ft_infer.py
Normal file
129
scripts/test_voxcpm_ft_infer.py
Normal file
@@ -0,0 +1,129 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Full finetune inference script (no LoRA).
|
||||
|
||||
Checkpoint directory contains complete model files (pytorch_model.bin, config.json, audiovae.pth, etc.),
|
||||
can be loaded directly via VoxCPMModel.from_local().
|
||||
|
||||
Usage:
|
||||
|
||||
python scripts/test_voxcpm_ft_infer.py \
|
||||
--ckpt_dir /path/to/checkpoints/step_0001000 \
|
||||
--text "Hello, I am the finetuned VoxCPM." \
|
||||
--output ft_test.wav
|
||||
|
||||
With voice cloning:
|
||||
|
||||
python scripts/test_voxcpm_ft_infer.py \
|
||||
--ckpt_dir /path/to/checkpoints/step_0001000 \
|
||||
--text "Hello, this is voice cloning result." \
|
||||
--prompt_audio path/to/ref.wav \
|
||||
--prompt_text "Reference audio transcript" \
|
||||
--output ft_clone.wav
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
import soundfile as sf
|
||||
import torch
|
||||
|
||||
from voxcpm.model import VoxCPMModel
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser("VoxCPM full-finetune inference test (no LoRA)")
|
||||
parser.add_argument(
|
||||
"--ckpt_dir",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Checkpoint directory (contains pytorch_model.bin, config.json, audiovae.pth, etc.)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--text",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Target text to synthesize",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt_audio",
|
||||
type=str,
|
||||
default="",
|
||||
help="Optional: reference audio path for voice cloning",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt_text",
|
||||
type=str,
|
||||
default="",
|
||||
help="Optional: transcript of reference audio",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output",
|
||||
type=str,
|
||||
default="ft_test.wav",
|
||||
help="Output wav file path",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cfg_value",
|
||||
type=float,
|
||||
default=2.0,
|
||||
help="CFG scale (default: 2.0)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--inference_timesteps",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Diffusion inference steps (default: 10)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_len",
|
||||
type=int,
|
||||
default=600,
|
||||
help="Max generation steps",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
# Load model from checkpoint directory
|
||||
print(f"[FT Inference] Loading model: {args.ckpt_dir}")
|
||||
model = VoxCPMModel.from_local(args.ckpt_dir, optimize=True, training=False)
|
||||
|
||||
# Run inference
|
||||
prompt_wav_path = args.prompt_audio or ""
|
||||
prompt_text = args.prompt_text or ""
|
||||
|
||||
print(f"[FT Inference] Synthesizing: text='{args.text}'")
|
||||
if prompt_wav_path:
|
||||
print(f"[FT Inference] Using reference audio: {prompt_wav_path}")
|
||||
print(f"[FT Inference] Reference text: {prompt_text}")
|
||||
|
||||
with torch.inference_mode():
|
||||
audio = model.generate(
|
||||
target_text=args.text,
|
||||
prompt_text=prompt_text,
|
||||
prompt_wav_path=prompt_wav_path,
|
||||
max_len=args.max_len,
|
||||
inference_timesteps=args.inference_timesteps,
|
||||
cfg_value=args.cfg_value,
|
||||
)
|
||||
|
||||
# Squeeze and save audio
|
||||
if isinstance(audio, torch.Tensor):
|
||||
audio_np = audio.squeeze(0).cpu().numpy()
|
||||
else:
|
||||
raise TypeError(f"Unexpected return type from model.generate: {type(audio)}")
|
||||
|
||||
out_path = Path(args.output)
|
||||
out_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
sf.write(str(out_path), audio_np, model.sample_rate)
|
||||
|
||||
print(f"[FT Inference] Saved to: {out_path}, duration: {len(audio_np) / model.sample_rate:.2f}s")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user