This commit is contained in:
zengguoyang
2025-09-16 11:46:47 +08:00
commit 272b8ffbf6
31 changed files with 3473 additions and 0 deletions

View File

@@ -0,0 +1,411 @@
from .config import MiniCPM4Config
import torch
import torch.nn as nn
from typing import List, Tuple
import math
from .cache import StaticKVCache
def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float):
old_dtype = hidden.dtype
variance = hidden.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
hidden = (hidden * torch.rsqrt(variance + eps)).to(old_dtype)
return hidden * weight
class MiniCPMRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
MiniCPMRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
return rms_layernorm(hidden_states, self.weight, self.variance_epsilon)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
"""
Args:
q: Tensor(batch_size, num_heads, seq_len, head_dim)
k: Tensor(batch_size, num_key_value_heads, seq_len, head_dim)
cos: Tensor(seq_len, head_dim)
sin: Tensor(seq_len, head_dim)
Returns:
Tensor(batch_size, num_heads, seq_len, head_dim), Tensor(batch_size, num_key_value_heads, seq_len, head_dim)
"""
orig_dtype = q.dtype
q = q.to(torch.float32)
k = k.to(torch.float32)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed.to(orig_dtype), k_embed.to(orig_dtype)
class MiniCPMLongRoPE(nn.Module):
"""MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(self, config: MiniCPM4Config):
super().__init__()
self.config = config
self.dim = config.kv_channels if config.kv_channels else config.hidden_size // config.num_attention_heads
self.base = config.rope_theta
self.max_position_embeddings = config.max_position_embeddings
self.short_factor = config.rope_scaling.short_factor
self.long_factor = config.rope_scaling.long_factor
self.original_max_position_embeddings = config.rope_scaling.original_max_position_embeddings
scale = (self.max_position_embeddings / self.original_max_position_embeddings)
self.scaling_factor = math.sqrt(
1 + math.log(scale) / math.log(self.original_max_position_embeddings)
)
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.max_seq_len_cached = 0
self.register_buffer("cos_cached", torch.empty(0), persistent=False)
self.register_buffer("sin_cached", torch.empty(0), persistent=False)
self._set_cos_sin_cache(
seq_len=self.max_position_embeddings,
device=self.inv_freq.device,
dtype=torch.float32
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
"""设置cos和sin缓存"""
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
if seq_len > self.original_max_position_embeddings:
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=device)
else:
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=device)
freqs = torch.mul(
torch.outer(t, 1.0 / ext_factors).to(device=device),
self.inv_freq.to(device=device).to(dtype)
)
# 创建embeddings
emb = torch.cat((freqs, freqs), dim=-1)
self.cos_cached = emb.cos().to(dtype) * self.scaling_factor
self.sin_cached = emb.sin().to(dtype) * self.scaling_factor
def forward(self, position_ids: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
position_ids: Tensor(seq_len) 或 Tensor(batch_size, seq_len)
Returns:
Tensor(seq_len, head_dim), Tensor(seq_len, head_dim)
"""
cos = self.cos_cached[position_ids]
sin = self.sin_cached[position_ids]
return cos, sin
class MiniCPMAttention(nn.Module):
def __init__(self, config: MiniCPM4Config, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = 10000.0
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_emb: Tuple[torch.Tensor, torch.Tensor],
is_causal: bool,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_emb
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
is_causal=is_causal,
enable_gqa=True,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
attn_output = self.o_proj(attn_output)
past_key_value = (key_states, value_states)
return attn_output, past_key_value
def forward_step(
self,
hidden_states: torch.Tensor,
position_emb: Tuple[torch.Tensor, torch.Tensor],
position_id: int,
kv_cache: Tuple[torch.Tensor, torch.Tensor],
) -> torch.Tensor:
bsz, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, 1, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, 1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, 1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_emb
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
key_cache, value_cache = kv_cache
key_cache[:, :, position_id, :] = key_states
value_cache[:, :, position_id, :] = value_states
attn_mask = torch.arange(key_cache.size(2), device=key_cache.device) <= position_id
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_cache,
value_cache,
attn_mask=attn_mask,
enable_gqa=True,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, self.num_heads * self.head_dim)
attn_output = self.o_proj(attn_output)
return attn_output
class MiniCPMMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = nn.SiLU()
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class MiniCPMDecoderLayer(nn.Module):
def __init__(self, config: MiniCPM4Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MiniCPMAttention(config=config, layer_idx=layer_idx)
self.mlp = MiniCPMMLP(config)
self.input_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.scale_depth = config.scale_depth
self.num_hidden_layers = config.num_hidden_layers
self.use_mup = config.use_mup
def forward(
self,
hidden_states: torch.Tensor,
position_emb: Tuple[torch.Tensor, torch.Tensor],
is_causal: bool,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
position_ids (`torch.LongTensor`): position ids of shape `(batch_size, seq_len)`
is_causal (`bool`): whether the attention mask is causal
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, present_key_value = self.self_attn(
hidden_states=hidden_states,
position_emb=position_emb,
is_causal=is_causal,
)
if self.use_mup:
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
else:
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
if self.use_mup:
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
else:
hidden_states = residual + hidden_states
return hidden_states, present_key_value
def forward_step(
self,
hidden_states: torch.Tensor,
position_emb: Tuple[torch.Tensor, torch.Tensor],
position_id: torch.Tensor,
kv_cache: Tuple[torch.Tensor, torch.Tensor],
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states = self.self_attn.forward_step(
hidden_states=hidden_states,
position_emb=position_emb,
position_id=position_id,
kv_cache=kv_cache,
)
if self.use_mup:
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
else:
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
if self.use_mup:
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
else:
hidden_states = residual + hidden_states
return hidden_states
class MiniCPMModel(nn.Module):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`]
Args:
config: MiniCPMConfig
"""
def __init__(self, config: MiniCPM4Config):
super().__init__()
self.vocab_size = config.vocab_size
self.config = config
if config.vocab_size > 0:
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
else:
self.embed_tokens = nn.Identity()
self.layers = nn.ModuleList(
[MiniCPMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rope_emb = MiniCPMLongRoPE(config)
self.kv_cache = None
def forward(
self,
inputs_embeds: torch.Tensor,
is_causal: bool = True,
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
"""
Args:
inputs_embeds: Tensor(batch_size, seq_length, hidden_size)
is_causal: bool, whether the attention mask is causal
Returns:
hidden_states: Tensor(batch_size, seq_length, hidden_size)
next_decoder_cache: List[(batch_size, num_heads, seq_length, head_dim), (batch_size, num_heads, seq_length, head_dim)]
"""
position_ids = torch.arange(0, inputs_embeds.size(1), dtype=torch.long, device=inputs_embeds.device)
position_emb = self.rope_emb(position_ids)
hidden_states = inputs_embeds
next_decoder_cache = []
for decoder_layer in self.layers:
hidden_states, this_cache = decoder_layer(
hidden_states,
position_emb,
is_causal,
)
next_decoder_cache.append(this_cache)
hidden_states = self.norm(hidden_states)
return hidden_states, next_decoder_cache
def forward_step(
self,
inputs_embeds: torch.Tensor,
position_id: torch.Tensor,
) -> torch.Tensor:
"""
Args:
inputs_embeds: Tensor(batch_size, hidden_size)
Returns:
hidden_states: Tensor(batch_size, hidden_size)
"""
assert self.kv_cache is not None, "KV cache is not setup"
position_emb = self.rope_emb(position_id)
hidden_states = inputs_embeds
for i, decoder_layer in enumerate(self.layers):
hidden_states = decoder_layer.forward_step(
hidden_states,
position_emb,
position_id,
self.kv_cache.get_layer_cache(i),
)
hidden_states = self.norm(hidden_states)
return hidden_states
def setup_cache(self, batch_size: int, max_length: int, device, dtype: torch.dtype):
self.kv_cache = StaticKVCache(
num_layers=self.config.num_hidden_layers,
num_kv_heads=self.config.num_key_value_heads,
dim_kv_head=self.config.hidden_size // self.config.num_attention_heads if self.config.kv_channels is None else self.config.kv_channels,
batch_size=batch_size,
device=device,
dtype=dtype,
max_length=max_length,
)