init
This commit is contained in:
279
app.py
Normal file
279
app.py
Normal file
@@ -0,0 +1,279 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import torch
|
||||
import gradio as gr
|
||||
import spaces
|
||||
from typing import Optional, Tuple
|
||||
from funasr import AutoModel
|
||||
from pathlib import Path
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
if os.environ.get("HF_REPO_ID", "").strip() == "":
|
||||
os.environ["HF_REPO_ID"] = "openbmb/VoxCPM-0.5B"
|
||||
|
||||
import voxcpm
|
||||
|
||||
|
||||
class VoxCPMDemo:
|
||||
def __init__(self) -> None:
|
||||
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
print(f"🚀 Running on device: {self.device}")
|
||||
|
||||
# ASR model for prompt text recognition
|
||||
self.asr_model_id = "iic/SenseVoiceSmall"
|
||||
self.asr_model: Optional[AutoModel] = AutoModel(
|
||||
model=self.asr_model_id,
|
||||
disable_update=True,
|
||||
log_level='DEBUG',
|
||||
device="cuda:0" if self.device == "cuda" else "cpu",
|
||||
)
|
||||
|
||||
# TTS model (lazy init)
|
||||
self.voxcpm_model: Optional[voxcpm.VoxCPM] = None
|
||||
self.default_local_model_dir = "./models/VoxCPM-0.5B"
|
||||
|
||||
# ---------- Model helpers ----------
|
||||
def _resolve_model_dir(self) -> str:
|
||||
"""
|
||||
Resolve model directory:
|
||||
1) Use local checkpoint directory if exists
|
||||
2) If HF_REPO_ID env is set, download into models/{repo}
|
||||
3) Fallback to 'models'
|
||||
"""
|
||||
if os.path.isdir(self.default_local_model_dir):
|
||||
return self.default_local_model_dir
|
||||
|
||||
repo_id = os.environ.get("HF_REPO_ID", "").strip()
|
||||
if len(repo_id) > 0:
|
||||
target_dir = os.path.join("models", repo_id.replace("/", "__"))
|
||||
if not os.path.isdir(target_dir):
|
||||
try:
|
||||
from huggingface_hub import snapshot_download # type: ignore
|
||||
os.makedirs(target_dir, exist_ok=True)
|
||||
print(f"Downloading model from HF repo '{repo_id}' to '{target_dir}' ...")
|
||||
snapshot_download(repo_id=repo_id, local_dir=target_dir, local_dir_use_symlinks=False)
|
||||
except Exception as e:
|
||||
print(f"Warning: HF download failed: {e}. Falling back to 'data'.")
|
||||
return "models"
|
||||
return target_dir
|
||||
return "models"
|
||||
|
||||
def get_or_load_voxcpm(self) -> voxcpm.VoxCPM:
|
||||
if self.voxcpm_model is not None:
|
||||
return self.voxcpm_model
|
||||
print("Model not loaded, initializing...")
|
||||
model_dir = self._resolve_model_dir()
|
||||
print(f"Using model dir: {model_dir}")
|
||||
self.voxcpm_model = voxcpm.VoxCPM(voxcpm_model_path=model_dir)
|
||||
print("Model loaded successfully.")
|
||||
return self.voxcpm_model
|
||||
|
||||
# ---------- Functional endpoints ----------
|
||||
def prompt_wav_recognition(self, prompt_wav: Optional[str]) -> str:
|
||||
if prompt_wav is None:
|
||||
return ""
|
||||
res = self.asr_model.generate(input=prompt_wav, language="auto", use_itn=True)
|
||||
text = res[0]["text"].split('|>')[-1]
|
||||
return text
|
||||
|
||||
def generate_tts_audio(
|
||||
self,
|
||||
text_input: str,
|
||||
prompt_wav_path_input: Optional[str] = None,
|
||||
prompt_text_input: Optional[str] = None,
|
||||
cfg_value_input: float = 2.0,
|
||||
inference_timesteps_input: int = 10,
|
||||
do_normalize: bool = True,
|
||||
denoise: bool = True,
|
||||
) -> Tuple[int, np.ndarray]:
|
||||
"""
|
||||
Generate speech from text using VoxCPM; optional reference audio for voice style guidance.
|
||||
Returns (sample_rate, waveform_numpy)
|
||||
"""
|
||||
current_model = self.get_or_load_voxcpm()
|
||||
|
||||
text = (text_input or "").strip()
|
||||
if len(text) == 0:
|
||||
raise ValueError("Please input text to synthesize.")
|
||||
|
||||
prompt_wav_path = prompt_wav_path_input if prompt_wav_path_input else None
|
||||
prompt_text = prompt_text_input if prompt_text_input else None
|
||||
|
||||
print(f"Generating audio for text: '{text[:60]}...'")
|
||||
wav = current_model.generate(
|
||||
text=text,
|
||||
prompt_text=prompt_text,
|
||||
prompt_wav_path=prompt_wav_path,
|
||||
cfg_value=float(cfg_value_input),
|
||||
inference_timesteps=int(inference_timesteps_input),
|
||||
normalize=do_normalize,
|
||||
denoise=denoise,
|
||||
)
|
||||
return (16000, wav)
|
||||
|
||||
|
||||
# ---------- UI Builders ----------
|
||||
|
||||
def create_demo_interface(demo: VoxCPMDemo):
|
||||
"""Build the Gradio UI for VoxCPM demo."""
|
||||
# static assets (logo path)
|
||||
gr.set_static_paths(paths=[Path.cwd().absolute()/"assets"])
|
||||
|
||||
with gr.Blocks(
|
||||
theme=gr.themes.Soft(
|
||||
primary_hue="blue",
|
||||
secondary_hue="gray",
|
||||
neutral_hue="slate",
|
||||
font=[gr.themes.GoogleFont("Inter"), "Arial", "sans-serif"]
|
||||
),
|
||||
css="""
|
||||
.logo-container {
|
||||
text-align: center;
|
||||
margin: 0.5rem 0 1rem 0;
|
||||
}
|
||||
.logo-container img {
|
||||
height: 80px;
|
||||
width: auto;
|
||||
max-width: 200px;
|
||||
display: inline-block;
|
||||
}
|
||||
/* Bold accordion labels */
|
||||
#acc_quick details > summary,
|
||||
#acc_tips details > summary {
|
||||
font-weight: 600 !important;
|
||||
font-size: 1.1em !important;
|
||||
}
|
||||
/* Bold labels for specific checkboxes */
|
||||
#chk_denoise label,
|
||||
#chk_denoise span,
|
||||
#chk_normalize label,
|
||||
#chk_normalize span {
|
||||
font-weight: 600;
|
||||
}
|
||||
"""
|
||||
) as interface:
|
||||
# Header logo
|
||||
gr.HTML('<div class="logo-container"><img src="/gradio_api/file=assets/voxcpm_logo.png" alt="VoxCPM Logo"></div>')
|
||||
|
||||
# Quick Start
|
||||
with gr.Accordion("📋 Quick Start Guide |快速入门", open=False, elem_id="acc_quick"):
|
||||
gr.Markdown("""
|
||||
### How to Use |使用说明
|
||||
1. **(Optional) Provide a Voice Prompt** - Upload or record an audio clip to provide the desired voice characteristics for synthesis.
|
||||
**(可选)提供参考声音** - 上传或录制一段音频,为声音合成提供音色、语调和情感等个性化特征
|
||||
2. **(Optional) Enter prompt text** - If you provided a voice prompt, enter the corresponding transcript here (auto-recognition available).
|
||||
**(可选项)输入参考文本** - 如果提供了参考语音,请输入其对应的文本内容(支持自动识别)。
|
||||
3. **Enter target text** - Type the text you want the model to speak.
|
||||
**输入目标文本** - 输入您希望模型朗读的文字内容。
|
||||
4. **Generate Speech** - Click the "Generate" button to create your audio.
|
||||
**生成语音** - 点击"生成"按钮,即可为您创造出音频。
|
||||
""")
|
||||
|
||||
# Pro Tips
|
||||
with gr.Accordion("💡 Pro Tips |使用建议", open=False, elem_id="acc_tips"):
|
||||
gr.Markdown(f"""
|
||||
### Prompt Speech Enhancement|参考语音降噪
|
||||
- **Enable** to remove background noise for a clean, studio-like voice, with an external ZipEnhancer component.
|
||||
**启用**:通过 ZipEnhancer 组件消除背景噪音,获得更好的音质。
|
||||
- **Disable** to preserve the original audio's background atmosphere.
|
||||
**禁用**:保留原始音频的背景环境声,如果想复刻相应声学环境。
|
||||
|
||||
### Text Normalization|文本正则化
|
||||
- **Enable** to process general text with an external WeTextProcessing component.
|
||||
**启用**:使用 WeTextProcessing 组件,可处理常见文本。
|
||||
- **Disable** to use VoxCPM's native text understanding ability. For example, it supports phonemes input ({HH AH0 L OW1}), try it!
|
||||
**禁用**:将使用 VoxCPM 内置的文本理解能力。如,支持音素输入(如 {da4}{jia1}好)和公式符号合成,尝试一下!
|
||||
|
||||
### CFG Value|CFG 值
|
||||
- **Lower CFG** if the voice prompt sounds strained or expressive.
|
||||
**调低**:如果提示语音听起来不自然或过于夸张。
|
||||
- **Higher CFG** for better adherence to the prompt speech style or input text.
|
||||
**调高**:为更好地贴合提示音频的风格或输入文本。
|
||||
|
||||
### Inference Timesteps|推理时间步
|
||||
- **Lower** for faster synthesis speed.
|
||||
**调低**:合成速度更快。
|
||||
- **Higher** for better synthesis quality.
|
||||
**调高**:合成质量更佳。
|
||||
|
||||
### Long Text (e.g., >5 min speech)|长文本 (如 >5分钟的合成语音)
|
||||
While VoxCPM can handle long texts directly, we recommend using empty lines to break very long content into paragraphs; the model will then synthesize each paragraph individually.
|
||||
虽然 VoxCPM 支持直接生成长文本,但如果目标文本过长,我们建议使用换行符将内容分段;模型将对每个段落分别合成。
|
||||
""")
|
||||
|
||||
# Main controls
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
prompt_wav = gr.Audio(
|
||||
sources=["upload", 'microphone'],
|
||||
type="filepath",
|
||||
label="Prompt Speech",
|
||||
value="./examples/example.wav",
|
||||
)
|
||||
DoDenoisePromptAudio = gr.Checkbox(
|
||||
value=False,
|
||||
label="Prompt Speech Enhancement",
|
||||
elem_id="chk_denoise",
|
||||
info="We use ZipEnhancer model to denoise the prompt audio."
|
||||
)
|
||||
with gr.Row():
|
||||
prompt_text = gr.Textbox(
|
||||
value="Just by listening a few minutes a day, you'll be able to eliminate negative thoughts by conditioning your mind to be more positive.",
|
||||
label="Prompt Text",
|
||||
placeholder="Please enter the prompt text. Automatic recognition is supported, and you can correct the results yourself..."
|
||||
)
|
||||
run_btn = gr.Button("Generate Speech", variant="primary")
|
||||
|
||||
with gr.Column():
|
||||
cfg_value = gr.Slider(
|
||||
minimum=1.0,
|
||||
maximum=3.0,
|
||||
value=2.0,
|
||||
step=0.1,
|
||||
label="CFG Value (Guidance Scale)",
|
||||
info="Higher values increase adherence to prompt, lower values allow more creativity"
|
||||
)
|
||||
inference_timesteps = gr.Slider(
|
||||
minimum=4,
|
||||
maximum=30,
|
||||
value=10,
|
||||
step=1,
|
||||
label="Inference Timesteps",
|
||||
info="Number of inference timesteps for generation (higher values may improve quality but slower)"
|
||||
)
|
||||
with gr.Row():
|
||||
text = gr.Textbox(
|
||||
value="VoxCPM is an innovative end-to-end TTS model from ModelBest, designed to generate highly realistic speech.",
|
||||
label="Target Text",
|
||||
info="Default processing splits text on \\n into paragraphs; each is synthesized as a chunk and then concatenated into the final audio."
|
||||
)
|
||||
with gr.Row():
|
||||
DoNormalizeText = gr.Checkbox(
|
||||
value=False,
|
||||
label="Text Normalization",
|
||||
elem_id="chk_normalize",
|
||||
info="We use WeTextPorcessing library to normalize the input text."
|
||||
)
|
||||
audio_output = gr.Audio(label="Output Audio")
|
||||
|
||||
# Wiring
|
||||
run_btn.click(
|
||||
fn=demo.generate_tts_audio,
|
||||
inputs=[text, prompt_wav, prompt_text, cfg_value, inference_timesteps, DoNormalizeText, DoDenoisePromptAudio],
|
||||
outputs=[audio_output],
|
||||
show_progress=True,
|
||||
api_name="generate",
|
||||
)
|
||||
prompt_wav.change(fn=demo.prompt_wav_recognition, inputs=[prompt_wav], outputs=[prompt_text])
|
||||
|
||||
return interface
|
||||
|
||||
|
||||
def run_demo(server_name: str = "localhost", server_port: int = 7860, show_error: bool = True):
|
||||
demo = VoxCPMDemo()
|
||||
interface = create_demo_interface(demo)
|
||||
# Recommended to enable queue on Spaces for better throughput
|
||||
interface.queue(max_size=10).launch(server_name=server_name, server_port=server_port, show_error=show_error)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_demo()
|
||||
Reference in New Issue
Block a user